Rosinberg M L, Tarjus G, Munakata T
Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, CNRS UMR 7600, 4 place Jussieu, 75252 Paris Cedex 05, France.
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
Phys Rev E. 2017 Feb;95(2-1):022123. doi: 10.1103/PhysRevE.95.022123. Epub 2017 Feb 21.
This paper is the second in a series devoted to the study of Langevin systems subjected to a continuous time-delayed feedback control. The goal of our previous paper [Phys. Rev. E 91, 042114 (2015)PLEEE81539-375510.1103/PhysRevE.91.042114] was to derive second-law-like inequalities that provide bounds to the average extracted work. Here we study stochastic fluctuations of time-integrated observables such as the heat exchanged with the environment, the extracted work, or the (apparent) entropy production. We use a path-integral formalism and focus on the long-time behavior in the stationary cooling regime, stressing the role of rare events. This is illustrated by a detailed analytical and numerical study of a Langevin harmonic oscillator driven by a linear feedback.
本文是致力于研究受连续时间延迟反馈控制的朗之万系统系列论文中的第二篇。我们之前的论文[《物理评论E》91, 042114 (2015年),PLEEE81539 - 3755,10.1103/PhysRevE.91.042114]的目标是推导类似第二定律的不等式,这些不等式为平均提取功提供界限。在此,我们研究时间积分可观测量的随机涨落,例如与环境交换的热量、提取的功或(表观)熵产生。我们使用路径积分形式,并关注稳态冷却 regime 下的长时间行为,强调罕见事件的作用。这通过对由线性反馈驱动的朗之万谐振子进行详细的解析和数值研究得到说明。