Faculty of Physics, VCQ, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
Department of Chemistry, Duke University, Durham, North Carolina, 27708, United States.
Nat Commun. 2020 Mar 13;11(1):1360. doi: 10.1038/s41467-020-15148-5.
Feedback control mechanisms are ubiquitous in science and technology, and play an essential role in regulating physical, biological and engineering systems. The standard second law of thermodynamics does not hold in the presence of measurement and feedback. Most studies so far have extended the second law for discrete, Markovian feedback protocols; however, non-Markovian feedback is omnipresent in processes where the control signal is applied with a non-negligible delay. Here, we experimentally investigate the thermodynamics of continuous, time-delayed feedback control using the motion of an optically levitated, underdamped microparticle. We test the validity of a generalized second law which bounds the energy extracted from the system, and study the breakdown of feedback cooling for very large time delays.
反馈控制机制在科学技术中无处不在,在调节物理、生物和工程系统方面发挥着重要作用。在存在测量和反馈的情况下,标准热力学第二定律不成立。到目前为止,大多数研究都将第二定律扩展到离散的马尔可夫反馈协议;然而,在控制信号施加有不可忽略的延迟的情况下,非马尔可夫反馈是普遍存在的。在这里,我们使用光学悬浮的欠阻尼微粒子的运动来实验研究连续时滞反馈控制的热力学。我们测试了一个广义第二定律的有效性,该定律限制了从系统中提取的能量,并研究了非常大的时滞反馈冷却的失效。