由蛋白质NH基团诱导的可移动水质子弛豫理论及其在大鼠心肌和小牛晶状体匀浆中的应用。
Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates.
作者信息
Koenig S H
机构信息
IBM T. J. Watson Research Center, Yorktown Heights, New York 10598.
出版信息
Biophys J. 1988 Jan;53(1):91-6. doi: 10.1016/S0006-3495(88)83069-8.
Kimmich and co-workers (cf., Winter, F., and R. Kimmich. 1982. Biochim. Biophys. Acta. 719:292-298) discovered peaks in the magnetic field-dependent longitudinal relaxation rate (1/T1) of water protons of muscle tissue, cells, and dehydrated protein in the field range 0.5-5 MHz (proton Larmor frequency), and argued that the peaks resulted from cross relaxation associated with quadrupolar splittings of the 14N nuclei of protein NH groups. More recently, analogous peaks were found in homogenates of calf eye lens (Beaulieu, C.F., J.I. Clark, R.D. Brown III, M. Spiller, and S. H. Koenig, 1987. Abstr. Soc. Magn. Res. Med., 6th, New York. 598-599), which are essentially concentrated protein solutions, and were measured with sufficient precision to allow resolution of the relaxation spectra into several peaks and the intrinsic linewidths to be determined. Here, we analyze these relaxation spectra, as well as earlier data on rat heart (Koenig, S. H., R. D. Brown III, D. Adams, D. Emerson, and C. G. Harrison. 1984. Invest. Radiol. 19:76-81) in some detail, and suggest a specific pathway for the cross relaxation to which we apply the theory of relaxation quantitatively. The view that emerges is that, at fields such that the proton Zeeman energy of the NH protons matches an 14N quadrupolar splitting, relaxation of these protons is by cross relaxation to the 14N nuclei which in turn transfer excess energy to the protein. The correlation time for the NH proton interaction is the T2 of the 14N nuclei, approximately 10(-6) s, whereas T1 of the NH protons is approximately 1.25 ms. At these energy level crossings, the NH protons become relaxation sinks for protons of rapidly exchanging (-3 x 109 s-1) water molecules hydrogen bonded to the same backbone carbonyl oxygens as the NH protons. The lifetime of this hydrogen bond (-3 x 10-10 s) then becomes the correlation time for the water proton-NH proton interaction which, though short, is much longer than the analogous correlation time (-5 x 10-12 s) in pure water; the enhanced interaction results in peaks in the field-dependent 1/ T, of the solvent protons. There are few data on the lifetime of such bonds, but the results here conform with the recent considerations of Bennett, H. F., R. D. Brown III, S. H. Koenig, and H. M. Swartz. 1987. Magn. Reson. Med. 4:93-111, regarding hydrogen bond lifetimes for water molecules bound to macromolecules. The recent precise field-dependent relaxation data, here combined with both a quantitative theory and the fact that the magnitude of the 14N peaks is very concentration sensitive, allow, at least for lens proteins, a study of protein-protein interactions difficult to investigate by other methods.
基米奇及其同事(参见温特,F.,和R. 基米奇。1982年。《生物化学与生物物理学报》719:292 - 298)在0.5 - 5兆赫(质子拉莫尔频率)的磁场范围内发现了肌肉组织、细胞和脱水蛋白质中水质子的磁场依赖性纵向弛豫率(1/T1)的峰值,并认为这些峰值是由与蛋白质NH基团的14N核四极分裂相关的交叉弛豫引起的。最近,在小牛眼晶状体匀浆中也发现了类似的峰值(博利厄,C.F.,J.I. 克拉克,R.D. 布朗三世,M. 斯皮勒,和S.H. 凯尼格,1987年。《磁共振医学学会摘要》,第六届,纽约。598 - 599),眼晶状体匀浆本质上是浓缩的蛋白质溶液,并且测量精度足够高,能够将弛豫谱解析为几个峰值并确定固有线宽。在此,我们详细分析了这些弛豫谱以及早期关于大鼠心脏的数据(凯尼格,S.H.,R.D. 布朗三世,D. 亚当斯,D. 爱默生,和C.G. 哈里森。1984年。《放射学研究》19:76 - 81),并提出了交叉弛豫的特定途径,我们对其应用了定量弛豫理论。由此得出的观点是,在这样的磁场中,NH质子的质子塞曼能量与14N核四极分裂相匹配,这些质子通过交叉弛豫到14N核而弛豫,14N核进而将多余的能量传递给蛋白质。NH质子相互作用的相关时间是14N核的T2,约为10^(-6)秒,而NH质子的T1约为1.25毫秒。在这些能级交叉处,NH质子成为与NH质子氢键连接到同一主链羰基氧上的快速交换(-3×10^9秒^(-1))水分子质子的弛豫汇。然后,这种氢键的寿命(-3×10^(-10)秒)成为水质子 - NH质子相互作用的相关时间,尽管很短,但比纯水中类似的相关时间(-5×10^(-12)秒)长得多;增强的相互作用导致溶剂质子的磁场依赖性1/T1出现峰值。关于这种键的寿命的数据很少,但这里的结果与贝内特,H.F.,R.D. 布朗三世,S.H. 凯尼格,和H.M. 施瓦茨。1987年。《磁共振医学》4:93 - 111中关于与大分子结合的水分子氢键寿命的近期考虑一致。最近精确的磁场依赖性弛豫数据,在此与定量理论以及14N峰值大小对浓度非常敏感这一事实相结合,至少对于晶状体蛋白而言,使得能够研究用其他方法难以探究的蛋白质 - 蛋白质相互作用。