Suppr超能文献

传统磁共振成像、扩散加权成像及动态对比增强磁共振成像联合应用在腮腺肿瘤诊断中的价值

The value of combining conventional, diffusion-weighted and dynamic contrast-enhanced MR imaging for the diagnosis of parotid gland tumours.

作者信息

Tao Xiaofeng, Yang Gongxin, Wang Pingzhong, Wu Yingwei, Zhu Wenjing, Shi Huimin, Gong Xin, Gao Weiqing, Yu Qiang

机构信息

Department of Radiology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Dentomaxillofac Radiol. 2017 Aug;46(6):20160434. doi: 10.1259/dmfr.20160434. Epub 2017 Apr 7.

Abstract

OBJECTIVES

The aim of this study was to determine the value of combining conventional MRI, diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE)-MRI in diagnosing solid neoplasms in the parotid gland.

METHODS

A total of 148 subjects (101 subjects with benign and 47 subjects with malignant tumours) were evaluated with conventional MRI, DWI and DCE-MRI prior to surgery and pathologic verification. The items observed with conventional MRI included the shape, capsule and signal intensity of parotid masses. The apparent diffusion coefficient (ADC) was calculated from DWI that was obtained with a b-factor of 0 and 1000 s mm. A time-intensity curve (TIC) was obtained from DCE-MRI.

RESULTS

There were significant differences (p < 0.01) in the shape, capsule, ADC and TIC between benign and malignant parotid tumours. Irregular neoplasms without a capsule, ADC <1.12 × 10 mm s and a plateau enhancement pattern were valuable parameters for predicting malignant neoplasms. A combination of all of these parameters yielded sensitivity, specificity, accuracy, positive-predictive value and negative-predictive value of 85.1%, 94.1%, 91.2%, 87.0% and 93.1%, respectively.

CONCLUSIONS

A combined analysis using conventional MRI, DWI and DCE-MRI is helpful in distinguishing benign from malignant tumours in the parotid gland.

摘要

目的

本研究旨在确定传统磁共振成像(MRI)、扩散加权成像(DWI)和动态对比增强(DCE)-MRI联合应用于诊断腮腺实性肿瘤的价值。

方法

共有148例受试者(101例良性肿瘤患者和47例恶性肿瘤患者)在手术及病理检查前接受了传统MRI、DWI和DCE-MRI检查。传统MRI观察的项目包括腮腺肿块的形态、包膜及信号强度。表观扩散系数(ADC)由b值为0和1000 s/mm²的DWI计算得出。DCE-MRI获得时间-强度曲线(TIC)。

结果

腮腺良恶性肿瘤在形态、包膜、ADC和TIC方面存在显著差异(p < 0.01)。形态不规则、无包膜、ADC < 1.12×10⁻³ mm²/s及平台期强化模式是预测恶性肿瘤的重要参数。所有这些参数联合应用的敏感性、特异性、准确性、阳性预测值和阴性预测值分别为85.1%、94.1%、91.2%、87.0%和93.1%。

结论

传统MRI、DWI和DCE-MRI联合分析有助于区分腮腺良恶性肿瘤。

相似文献

引用本文的文献

6
An attention base U-net for parotid tumor autosegmentation.用于腮腺肿瘤自动分割的注意力基础U型网络。
Front Oncol. 2022 Nov 24;12:1028382. doi: 10.3389/fonc.2022.1028382. eCollection 2022.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验