Suppr超能文献

基于MRI的影像组学特征在预测腮腺肿瘤恶性程度中的作用

The Role of an MRI-Based Radiomic Signature in Predicting Malignancy of Parotid Gland Tumors.

作者信息

Muntean Delia Doris, Dudea Sorin Marian, Băciuț Mihaela, Dinu Cristian, Stoia Sebastian, Solomon Carolina, Csaba Csutak, Rusu Georgeta Mihaela, Lenghel Lavinia Manuela

机构信息

Department of Radiology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.

Department of Maxillofacial Surgery and Implantology, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.

出版信息

Cancers (Basel). 2023 Jun 23;15(13):3319. doi: 10.3390/cancers15133319.

Abstract

The aim of this study was to assess the ability of MRI radiomic features to differentiate between benign parotid gland tumors (BPGT) and malignant parotid gland tumors (MPGT). This retrospective study included 93 patients who underwent MRI examinations of the head and neck region (78 patients presenting unique PGT, while 15 patients presented double PGT). A total of 108 PGT with histological confirmation were eligible for the radiomic analysis and were assigned to a training group ( = 83; 58 BPGT; 25 MPGT) and a testing group ( = 25; 16 BPGT; 9 MPGT). The radiomic features were extracted from 3D segmentations of the PGT on the T2-weighted and fat-saturated, contrast-enhanced T1-weighted images. Following feature reduction techniques, including LASSO regression analysis, a radiomic signature (RS) was built with five radiomic features. The RS presented a good diagnostic performance in differentiating between PGT, achieving an area under the curve (AUC) of 0.852 ( < 0.001) in the training set and 0.786 ( = 0.017) in the testing set. In both datasets, the RS proved to have lower values in the BPGT group as compared to MPGT group ( < 0.001 and = 0.023, respectively). The multivariate analysis revealed that RS was independently associated with PGT malignancy, together with the ill-defined margin pattern ( = 0.031, = 0.001, respectively). The complex model, using clinical data, MRI features and the RS, presented a higher diagnostic performance (AUC of 0.976) in comparison to the RS alone. MRI-based radiomic features could be considered potential additional imaging biomarkers able to discriminate between benign and malignant parotid gland tumors.

摘要

本研究的目的是评估MRI影像组学特征区分腮腺良性肿瘤(BPGT)和腮腺恶性肿瘤(MPGT)的能力。这项回顾性研究纳入了93例接受头颈部MRI检查的患者(78例为单发PGT,15例为多发PGT)。共有108例经组织学证实的PGT符合影像组学分析条件,并被分为训练组(n = 83;58例BPGT;25例MPGT)和测试组(n = 25;16例BPGT;9例MPGT)。影像组学特征从PGT在T2加权和脂肪饱和、对比增强T1加权图像上的三维分割中提取。经过包括LASSO回归分析在内的特征降维技术后,构建了一个包含五个影像组学特征的影像组学特征(RS)。RS在区分PGT方面表现出良好的诊断性能,在训练集中曲线下面积(AUC)为0.852(P < 0.001),在测试集中为0.786(P = 0.017)。在两个数据集中,与MPGT组相比,RS在BPGT组中的值均较低(分别为P < 0.001和P = 0.023)。多变量分析显示,RS与PGT恶性程度独立相关,同时与边界不清的边缘模式也相关(分别为P = 0.031,P = 0.001)。与单独使用RS相比,使用临床数据、MRI特征和RS的复杂模型表现出更高的诊断性能(AUC为0.976)。基于MRI的影像组学特征可被视为能够区分腮腺良性和恶性肿瘤的潜在额外影像生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b39/10340186/12348761ed69/cancers-15-03319-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验