Suppr超能文献

通过协同控制非化学计量比和掺杂来调节阴极表面结构,从而增强 CO 电解。

Enhancing CO electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures.

机构信息

Key Lab of Design &Assembly of Functional Nanostructure, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

出版信息

Nat Commun. 2017 Mar 16;8:14785. doi: 10.1038/ncomms14785.

Abstract

Sustainable future energy scenarios require significant efficiency improvements in both electricity generation and storage. High-temperature solid oxide cells, and in particular carbon dioxide electrolysers, afford chemical storage of available electricity that can both stabilize and extend the utilization of renewables. Here we present a double doping strategy to facilitate CO reduction at perovskite titanate cathode surfaces, promoting adsorption/activation by making use of redox active dopants such as Mn linked to oxygen vacancies and dopants such as Ni that afford metal nanoparticle exsolution. Combined experimental characterization and first-principle calculations reveal that the adsorbed and activated CO adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The dual doping strategy provides optimal performance with no degradation being observed after 100 h of high-temperature operation and 10 redox cycles, suggesting a reliable cathode material for CO electrolysis.

摘要

可持续未来能源情景需要在发电和储能方面都显著提高效率。高温固体氧化物电池,特别是二氧化碳电解槽,提供了可用电能的化学存储,既可以稳定又可以扩展可再生能源的利用。在这里,我们提出了一种双重掺杂策略,以促进钙钛矿钛酸盐阴极表面的 CO 还原,通过利用氧化还原活性掺杂剂(如与氧空位相连的 Mn)和提供金属纳米颗粒析出的掺杂剂(如 Ni)来促进吸附/活化。结合实验表征和第一性原理计算揭示,吸附和活化的 CO 采用了介于二氧化碳分子和碳酸根离子之间的中间化学状态。双掺杂策略提供了最佳性能,在 100 小时的高温运行和 10 个氧化还原循环后没有观察到降解,这表明它是一种用于 CO 电解的可靠阴极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f083/5357311/f7706479d585/ncomms14785-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验