Department of Chemistry, University of Washington , Seattle, Washington 98105, United States.
J Am Chem Soc. 2017 Apr 19;139(15):5266-5276. doi: 10.1021/jacs.7b00711. Epub 2017 Mar 30.
With their unique ability to concentrate and scatter light, plasmonic nanomaterials have been the focus of tremendous synthesis and characterization efforts in the past two decades. Recently, the topic of reversibly reconfigurable plasmonic nanomaterials has become an intensive research area offering the opportunity to reconfigure the optical, mechanical, electronic, and catalytic properties of materials with promising applications in fields ranging from biosensors to nanorobotics and energy. This Perspective discusses the state of the art in the fabrication and application of reversibly reconfigurable colloidal plasmonic nanomaterials based on the actuation of interparticle couplings and explores some promising directions for future research ranging from direction control, two-dimensional materials, and the incorporation of feedback mechanisms for designing robust responses.
在过去的二十年中,等离子体纳米材料因其独特的聚焦和分散光的能力而成为了巨大的合成和表征努力的焦点。最近,可重构等离子体纳米材料的话题成为了一个密集的研究领域,为重新配置材料的光学、机械、电子和催化性能提供了机会,这些材料在从生物传感器到纳米机器人和能源等领域都有很有前景的应用。本观点讨论了基于颗粒间耦合的致动来制造和应用可重构胶体等离子体纳米材料的最新进展,并探讨了一些有前途的未来研究方向,包括方向控制、二维材料和反馈机制的引入,以设计稳健的响应。