Suppr超能文献

用于胶质母细胞瘤过继性细胞治疗的抗表皮生长因子受体III型嵌合抗原受体修饰的T细胞

Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma.

作者信息

Ren Pei-Pei, Li Ming, Li Tian-Fang, Han Shuang-Yin

机构信息

Translational Research Center, People's Hospital of Henan Province, Zhengzhou University, Zhengzhou 450003, China.

Departmentt of Neurosurgery, People's Hospital of Henan Province, Zhengzhou University, Zhengzhou 450003, China.

出版信息

Curr Pharm Des. 2017;23(14):2113-2116. doi: 10.2174/1381612823666170316125402.

Abstract

Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM.

摘要

胶质母细胞瘤(GBM)是最具毁灭性的脑肿瘤之一,预后差且死亡率高。尽管后续进行放疗和化疗的根治性手术治疗可提高生存率,但由于GBM细胞会扩散并破坏正常脑结构,此类治疗方案的疗效并不充分。此外,这些非特异性治疗可能会损害相邻的健康脑组织。因此,开发能够精确靶向侵袭性肿瘤细胞而不损伤正常组织的新型疗法势在必行。免疫疗法因其在临床前模型和临床试验中抑制各种肿瘤生长的能力,是一种很有前景的方法。使用靶向GBM中理想分子标志物(如III型表皮生长因子受体(EGFRvIII))的嵌合抗原受体(CAR)工程化T细胞进行过继性细胞治疗(ACT),已在治疗恶性脑肿瘤方面显示出令人满意的疗效。在此,我们总结了针对GBM的、以EGFRvIII为导向的CAR修饰T细胞免疫治疗策略的最新进展。

相似文献

1
Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma.
Curr Pharm Des. 2017;23(14):2113-2116. doi: 10.2174/1381612823666170316125402.
2
Targeting EGFRvIII for glioblastoma multiforme.
Cancer Lett. 2017 Sep 10;403:224-230. doi: 10.1016/j.canlet.2017.06.024. Epub 2017 Jun 23.
6
Antitumor efficacy of chimeric antigen receptor T cells against EGFRvIII-expressing glioblastoma in C57BL/6 mice.
Biomed Pharmacother. 2019 May;113:108734. doi: 10.1016/j.biopha.2019.108734. Epub 2019 Mar 5.
7
Chimeric Antigen Receptor T-Cell Therapy: Updates in Glioblastoma Treatment.
Neurosurgery. 2021 May 13;88(6):1056-1064. doi: 10.1093/neuros/nyaa584.
8
Chimeric Antigen Receptor T-Cell Therapy in Glioblastoma: Current and Future.
Front Immunol. 2020 Nov 3;11:594271. doi: 10.3389/fimmu.2020.594271. eCollection 2020.

引用本文的文献

1
Targeting EGFR and PI3K/mTOR pathways in glioblastoma: innovative therapeutic approaches.
Med Oncol. 2025 Mar 10;42(4):97. doi: 10.1007/s12032-025-02652-1.
2
Exploring the potential of the convergence between extracellular vesicles and CAR technology as a novel immunotherapy approach.
J Extracell Biol. 2024 Sep 26;3(9):e70011. doi: 10.1002/jex2.70011. eCollection 2024 Sep.
3
Prospects and challenges of CAR-T cell therapy combined with ICIs.
Front Oncol. 2024 Mar 20;14:1368732. doi: 10.3389/fonc.2024.1368732. eCollection 2024.
5
Mesothelin-targeted CAR-T cells for adoptive cell therapy of solid tumors.
Arch Med Sci. 2019 May 8;17(5):1213-1220. doi: 10.5114/aoms.2019.84888. eCollection 2021.
6
CAR-T cells: Early successes in blood cancer and challenges in solid tumors.
Acta Pharm Sin B. 2021 May;11(5):1129-1147. doi: 10.1016/j.apsb.2020.10.020. Epub 2020 Nov 2.
7
Against the Resilience of High-Grade Gliomas: The Immunotherapeutic Approach (Part I).
Brain Sci. 2021 Mar 18;11(3):386. doi: 10.3390/brainsci11030386.
8
Adoptive immunotherapies in neuro-oncology: classification, recent advances, and translational challenges.
Acta Biomed. 2020 Jun 30;91(7-S):18-31. doi: 10.23750/abm.v91i7-S.9952.
9
EGFR: An Oncogene with Ambiguous Role.
J Oncol. 2019 Dec 16;2019:1092587. doi: 10.1155/2019/1092587. eCollection 2019.
10
Influence of transcriptional variants on metastasis.
RNA Biol. 2018;15(8):1006-1024. doi: 10.1080/15476286.2018.1493328. Epub 2018 Jul 24.

本文引用的文献

1
Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy.
N Engl J Med. 2016 Dec 29;375(26):2561-9. doi: 10.1056/NEJMoa1610497.
2
A Rational Approach to Target the Epidermal Growth Factor Receptor in Glioblastoma.
Curr Cancer Drug Targets. 2017;17(3):290-296. doi: 10.2174/1568009616666161227091522.
3
Driving gene-engineered T cell immunotherapy of cancer.
Cell Res. 2017 Jan;27(1):38-58. doi: 10.1038/cr.2016.154. Epub 2016 Dec 27.
4
Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them.
Cancer Gene Ther. 2017 Mar;24(3):121-129. doi: 10.1038/cgt.2016.46. Epub 2016 Oct 21.
5
Epidemiology of Brain Tumors.
Neurol Clin. 2016 Nov;34(4):981-998. doi: 10.1016/j.ncl.2016.06.014.
6
Cellular immunotherapy for malignant gliomas.
Expert Opin Biol Ther. 2016 Oct;16(10):1265-75. doi: 10.1080/14712598.2016.1214266. Epub 2016 Jul 29.
7
Old player, new partner: EGFRvIII and cytokine receptor signaling in glioblastoma.
Nat Neurosci. 2016 May 26;19(6):765-7. doi: 10.1038/nn.4302.
8
Emerging immunotherapies for glioblastoma.
Expert Opin Emerg Drugs. 2016 Jun;21(2):133-45. doi: 10.1080/14728214.2016.1186643.
9
Current and future strategies for treatment of glioma.
Neurosurg Rev. 2017 Jan;40(1):1-14. doi: 10.1007/s10143-016-0709-8. Epub 2016 Apr 16.
10
Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy.
Clin Cancer Res. 2016 Apr 15;22(8):1875-84. doi: 10.1158/1078-0432.CCR-15-1433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验