Kobayashi H, Kobayashi T, Fukushima M
First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
J Appl Physiol (1985). 1987 Dec;63(6):2201-7. doi: 10.1152/jappl.1987.63.6.2201.
To assess the role of intracellular adenosine 3',5'-cyclic monophosphate (cAMP), we tested the effects of dibutyryl cAMP (DBcAMP), an analogue of cAMP, on lung injury induced by pulmonary air embolism in awake sheep with chronic lung lymph fistula. We infused air (1.23 ml/min) in the pulmonary artery for 2 h in untreated control sheep. In DBcAMP-pretreated sheep DBcAMP was infused (1 mg/kg bolus and 0.02 mg.kg-1.min-1 constantly for 5 h); after 1 h from beginning of DBcAMP administration the air infusion was started. After the air infusion, pulmonary arterial pressure (Ppa) and lung lymph flow rate (Qlym) significantly increased in both groups. DBcAMP-pretreated sheep showed significantly lower responses in Qlym (2.7 X base line) compared with untreated control sheep (4.6 X base line); however, Ppa, left atrial pressure, and lung lymph-to-plasma protein concentration ratio were not significantly different between the two groups. Although plasma and lung lymph thromboxane B2 and 6-ketoprostaglandin F1 alpha concentrations increased significantly during the air infusion, DBcAMP-pretreated sheep showed significantly lower responses. Thus DBcAMP infusion attenuated pulmonary microvascular permeability induced by air embolism. We conclude that pulmonary vascular permeability is in part controlled by the intracellular cAMP level.