Yurowitzky Yu G, Milman L S
Institute of Developmental Biology, Academy of Sciences of the USSR, Moscow.
Wilhelm Roux Arch Entwickl Mech Org. 1973 Mar;173(1):9-21. doi: 10.1007/BF00581666.
An acceleration of the rate of glycogenolysis in the early embryogenesis of the loach (Misgurnus fossilis L.) is accompanied by an increase of the content of hexose monophosphates, the rate of lactate formation and the rate of respiration. The unfertilized egg and the intact embryo of the loach have an identical activity of phosphorylase (EC 2.4.1.1.) and a constant ratio of the active/latent phosphorylase.Following the stage of 32 blastomeres, an increase of phosphorylase activity and the glycogen content occurs in the yolk-free embryo (blastoderm); this increase stops after the onset of gastrulation. In view of the facts that a) the blastoderm contains practically no latent phosphorylase, b) an elevation of phosphorylase activity is synchronized with an increase of the glycogen content, and c) this process is not related to an increase of the total phosphorylase activity and glycogen content in the intact egg, the authors suggest that glycogen-bound phosphorylase transfers from the yolk to the embryo at the stages of cleavage and blastula.In the loach oocyte, unfertilized egg and embryo the main activity of phosphorylase (more than 3/4) is associated with low molecular weight glycogen; this form of glycogen cannot be sedimented at 144000 g, and constitutes not more than 30 % of the total glycogen.Glycogen synthetase (EC 2.4.1.11) is, on the contrary, bound completely with granular glycogen. The oocyte maturation, ovulation and the onset of glycogenolysis after fertilization do not involve a redistribution of enzymes between glycogen fractions of different molecular weights.An increase of the glucose level in oocytes accelerates the conversion of active phosphorylase into its latent form. Physiological concentrations of glucose (up to 2 × 10 M) do not inhibit phosphorylase activity.
泥鳅(Misgurnus fossilis L.)早期胚胎发育过程中糖原分解速率的加快伴随着单磷酸己糖含量的增加、乳酸生成速率和呼吸速率的提高。未受精卵和泥鳅的完整胚胎具有相同的磷酸化酶(EC 2.4.1.1.)活性以及活性/潜在磷酸化酶的恒定比例。在32细胞期之后,无卵黄胚胎(胚盘)中磷酸化酶活性和糖原含量增加;这种增加在原肠胚形成开始后停止。鉴于以下事实:a)胚盘实际上不含潜在磷酸化酶;b)磷酸化酶活性的升高与糖原含量的增加同步;c)这一过程与完整卵中总磷酸化酶活性和糖原含量的增加无关,作者认为在卵裂期和囊胚期,与糖原结合的磷酸化酶从卵黄转移到胚胎中。在泥鳅卵母细胞、未受精卵和胚胎中,磷酸化酶的主要活性(超过3/4)与低分子量糖原相关;这种糖原形式在144000 g下不能沉淀,且占总糖原的比例不超过30%。相反,糖原合成酶(EC 2.4.1.11)完全与颗粒状糖原结合。卵母细胞成熟、排卵以及受精后糖原分解的开始并不涉及不同分子量糖原组分之间酶的重新分布。卵母细胞中葡萄糖水平的升高加速了活性磷酸化酶向其潜在形式的转化。生理浓度的葡萄糖(高达2×10 M)不会抑制磷酸化酶活性。