Hackstein Johannes H P, Beck Heinz, Hochstenbach Ron, Kremer Hannie, Zacharias Helmut
Department of Molecular and Developmental Genetics, Catholic University of Nijmegen, Faculty of Science, Toernooiveld, NL-6525 ED, Nijmegen, The Netherlands.
Institute of Zoology, University of Kiel, D-2300, Kiel, Federal Republic of Germany.
Rouxs Arch Dev Biol. 1990 May;199(5):251-280. doi: 10.1007/BF01709505.
We constructed balancer-chromosomes for the large autosomes ofDrosophila hydei and screened more than 16000 chromosomes for male sterile mutations in order to dissect spermatogenesis genetically. 365 mutants on the X chromosome and the autosomes 2, 3, and 4 were recovered and analysed cytologically in squash preparations under phase-contrast optics. The majority of the mutations allows a rather advanced differentiation of the spermatozoa. At the light-microscopical level, it is possible to classify these mutations with respect to individualization, coiling or motility of the mutant spermatozoa. In contrast, a small number of mutants exhibits conspicuous, pleiotropic phenotypes. Gonial divisions, the shaping of the spermatocyte nucleus and male meiotic divisions are controlled by X chromosomal or autosomal genes which can mutate to male sterile alleles. A number of nonallelic 3 chromosome male sterile mutations interfere with the unfolding of the Y chromosomal lampbrush loops. Other autosomal male sterile mutations modify the morphology of these lampbrush loops. Another group of mutations inhibits the formation of the nebenkern while the development of the spermatid nucleus and the flagellum can proceed. Such male sterile mutations can decouple the development of nucleus, protein body, nebenkern, and flagellum of the spermatid. Thus, we can describe spermatogenesis inDrosophila as the coordinate execution of the individual developmental programs of the different components of the spermatozoon.
我们构建了海德果蝇大常染色体的平衡染色体,并筛选了超过16000条染色体以寻找雄性不育突变,以便从遗传学角度剖析精子发生过程。在相差光学显微镜下,对回收的位于X染色体以及2号、3号和4号常染色体上的365个突变体进行了细胞学分析。大多数突变允许精子进行相当高级的分化。在光学显微镜水平上,可以根据突变精子的个体化、卷曲或运动能力对这些突变进行分类。相比之下,少数突变体表现出明显的多效性表型。生殖细胞分裂、精母细胞核的形成以及雄性减数分裂受X染色体或常染色体基因控制,这些基因可突变为雄性不育等位基因。一些非等位的3号染色体雄性不育突变会干扰Y染色体灯刷环的展开。其他常染色体雄性不育突变会改变这些灯刷环的形态。另一组突变会抑制副核的形成,而精子细胞核和鞭毛的发育可以继续进行。这种雄性不育突变可以使精子细胞核、蛋白体、副核和鞭毛的发育脱钩。因此,我们可以将果蝇的精子发生描述为精子不同组成部分个体发育程序的协同执行。