Suppr超能文献

基于联合强度和形状分析的女性盆腔合成CT生成

Female pelvic synthetic CT generation based on joint intensity and shape analysis.

作者信息

Liu Lianli, Jolly Shruti, Cao Yue, Vineberg Karen, Fessler Jeffrey A, Balter James M

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, United States of America. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America.

出版信息

Phys Med Biol. 2017 Apr 21;62(8):2935-2949. doi: 10.1088/1361-6560/62/8/2935. Epub 2017 Mar 17.

Abstract

Using MRI for radiotherapy treatment planning and image guidance is appealing as it provides superior soft tissue information over CT scans and avoids possible systematic errors introduced by aligning MR to CT images. This study presents a method that generates Synthetic CT (MRCT) volumes by performing probabilistic tissue classification of voxels from MRI data using a single imaging sequence (T1 Dixon). The intensity overlap between different tissues on MR images, a major challenge for voxel-based MRCT generation methods, is addressed by adding bone shape information to an intensity-based classification scheme. A simple pelvic bone shape model, built from principal component analysis of pelvis shape from 30 CT image volumes, is fitted to the MR volumes. The shape model generates a rough bone mask that excludes air and covers bone along with some surrounding soft tissues. Air regions are identified and masked out from the tissue classification process by intensity thresholding outside the bone mask. A regularization term is added to the fuzzy c-means classification scheme that constrains voxels outside the bone mask from being assigned memberships in the bone class. MRCT image volumes are generated by multiplying the probability of each voxel being represented in each class with assigned attenuation values of the corresponding class and summing the result across all classes. The MRCT images presented intensity distributions similar to CT images with a mean absolute error of 13.7 HU for muscle, 15.9 HU for fat, 49.1 HU for intra-pelvic soft tissues, 129.1 HU for marrow and 274.4 HU for bony tissues across 9 patients. Volumetric modulated arc therapy (VMAT) plans were optimized using MRCT-derived electron densities, and doses were recalculated using corresponding CT-derived density grids. Dose differences to planning target volumes were small with mean/standard deviation of 0.21/0.42 Gy for D0.5cc and 0.29/0.33 Gy for D99%. The results demonstrate the accuracy of the method and its potential in supporting MRI only radiotherapy treatment planning.

摘要

使用磁共振成像(MRI)进行放射治疗计划和图像引导很有吸引力,因为它比计算机断层扫描(CT)扫描提供更优越的软组织信息,并且避免了将磁共振图像与CT图像对齐时可能引入的系统误差。本研究提出了一种方法,该方法通过使用单个成像序列(T1 Dixon)对MRI数据中的体素进行概率组织分类来生成合成CT(MRCT)体积。通过将骨形状信息添加到基于强度的分类方案中,解决了MR图像上不同组织之间的强度重叠问题,这是基于体素的MRCT生成方法的一个主要挑战。一个简单的骨盆骨形状模型,由30个CT图像体积的骨盆形状主成分分析构建而成,被拟合到MR体积上。该形状模型生成一个粗糙的骨掩码,该掩码排除空气并覆盖骨骼以及一些周围的软组织。通过在骨掩码外部进行强度阈值化,在组织分类过程中识别并屏蔽空气区域。在模糊c均值分类方案中添加了一个正则化项,该正则化项限制骨掩码外部的体素被分配到骨类的成员资格。通过将每个体素在每个类中出现的概率与相应类的指定衰减值相乘,并对所有类的结果求和,生成MRCT图像体积。对于9名患者,MRCT图像呈现出与CT图像相似的强度分布,肌肉的平均绝对误差为13.7 HU,脂肪为15.9 HU,盆腔内软组织为49.1 HU,骨髓为129.1 HU,骨组织为274.4 HU。使用从MRCT导出的电子密度优化容积调强弧形治疗(VMAT)计划,并使用相应的从CT导出的密度网格重新计算剂量。对计划靶体积的剂量差异很小,D0.5cc的平均/标准差为0.21/0.42 Gy,D99%的平均/标准差为0.29/0.33 Gy。结果证明了该方法的准确性及其在支持仅使用MRI的放射治疗计划方面的潜力。

相似文献

1

引用本文的文献

10
MRI-only treatment planning: benefits and challenges.仅 MRI 治疗计划:优势与挑战。
Phys Med Biol. 2018 Feb 26;63(5):05TR01. doi: 10.1088/1361-6560/aaaca4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验