Suppr超能文献

[决定萼花臂尾轮虫(轮虫纲)时间变化的因素]

[The factors determining temporal variation in Brachionus calyciflorus pallas (rotatoria)].

作者信息

Halbach Udo

机构信息

Zoologisches Institut der Universität München, München, Deutschland.

出版信息

Oecologia. 1970 Sep;4(3):262-318. doi: 10.1007/BF00377250.

Abstract
  1. In the rotifer Brachionus calyciflorus a pair of posterolateral spines (PL) is subjected to extensive temporal variation. The length of these spines may vary from complete absence to more than lorica length. Production of spines is induced by starvation, low temperature, and a substance produced by the predatory rotifer Asplanchna. The aim of this study was, by comparing the effectiveness of these factors, to gain insight into the physiological mechanisms involved, and to assess their relative significance in natural populations. 2. The other spines of the lorica vary in accordance with PL (Fig. 1), however, they never disappear. In the absence of PL, they continue to vary in the same sense (Table 2). 3. In the laboratory starvation and low temperature induce only short PL. To elicit long spines the Asplanchna-substance is always necessary (Fig. 2). The effects of the three factors are additive. High temperature seems to inhibit spine production. The type of the inducing factor has no recognizable influence on the variability of the reaction (Figs. 3 and 4); even under conditions where the reaction is maximal no reduction of the standard deviation is found. 4. There is no clearly recognizable short-term inheritance of spine length: almost the full reaction to each of the inducing factors is realized in the first generation following induction (Fig. 5). 5. Low temperature increases body size. Analysis shows that this temperature effect consists of two components, one acting on egg size, the other on the animals growth after hatching (Figs. 6 and 7). 6. The final spine length is always determined before hatching (Fig. 5). The inducing factors determine the body proportions of the neonates; after hatching the spine length grows allometrically. The average growth rate of the PL relative to that of the body was k=0.54, i.e. the growth rate of the spines is smaller than that of the body (negative allometry). The value of k appears to be a constant, at least it is not influenced by the type of spine induction, the initial spine length, and the conditions after hatching (Table 4 and Fig. 9). 7. Using the allometric relation, an index of spine length (I ) was defined, which is independent of body size. ID permits the quantitative comparison of populations with different age structures, and of age (size) classes within the same sample. Differences between the I -values of the age classes of a sample indicate fluctuations of spine inducing factors (Fig. 10). It is thus possible to estimate the strength of spine inducing factors during previous periods by studying a single plankton sample (Figs. 11 and 12). 8. A reproducible bio-assay was developed to test the spine inducing activity of the medium. A relative unit of Asplanchna-substance (as) was defined. The quantity of substance produced per unit volume and per unit time is proportional to Asplanchna density and is influenced by temperature (within 10 to 25\dg C: Q =4). The amount of substance produced by 1 Asplanchna in 25 sec at 20\dg C in 1 ml medium will induce just recognizable spines in the experimental clone of Brachionus. Further data of substance production at 10, 15, and 25\dg C are given in Table 6. The substance decomposes exponentially (Fig. 14a). The velocity of this decomposition is influenced by temperature. Within the temperature range studied the half-life varies from 1 to 3 days (Fig. 14b). Theoretically, a specific equilibrium concentration of active substance corresponds to each population density of Asplanchna. This concentration can be computed using the data of production and decomposition (Table 6). However, in experimental populations as well as in the field, the actual concentrations were always considerably lower than expected on the basis of the Asplanchna density. This fact suggests that Brachionus incorporates the substance. Therefore, a pragmatic correction of the theoretical balance of the Asplanchna-substance was introduced by assuming that there is no accumulation of substance for more than 24 hours. With this correction, there is good agreement between the expected and the observed spine-indices in laboratory and field populations. 9. A quantitative comparison of the effectiveness of the three spine inducing factors shows that under natural conditions, long spines (mean I >0.3) cannot be induced by temperature and starvation, but must be due to Asplanchna-substance (Fig. 17). 10. In the field the Asplanchna-substance is the most important agent. Bioassays show that water of all ponds containing Asplanchna possesses spine inducing activity (Table 7). Both Asplanchna sieboldi (s. 1.) and A. priodonta are effective. The spine-indices of neonate Brachionus show a good correlation with the prevailing Asplanchna density (Figs. 20\2-22). The correlations of the indices of adult Brachionus show time-lags which correspond to the age of the animals. After the disappearance of Asplanchna, the spine-indices decrease with age-dependent time-lag. The spine-inducing influence of temperature is lower in the field than in the laboratory (Fig. 23). The possible effects of unknown factors in the field are discussed. 11. The reaction norms of two stocks from different ponds were tested. They exhibited remarkable and significantly different I -values at identical conditions of induction (Fig. 2), which occured at all three inducing factors. 12. Hypothetical mechanisms of spine production are discussed; possible differences in the physiological mechanisms of the three spine-inducing factors are indicated. Some aspects of the adaptive value of spine length variation are discussed.
摘要
  1. 在萼花臂尾轮虫中,一对后侧棘(PL)会经历广泛的时间变化。这些棘的长度可能从完全没有到超过兜甲长度不等。棘的产生是由饥饿、低温以及捕食性轮虫晶囊轮虫产生的一种物质诱导的。本研究的目的是通过比较这些因素的有效性,深入了解其中涉及的生理机制,并评估它们在自然种群中的相对重要性。2. 兜甲的其他棘会根据后侧棘(PL)而变化(图1),然而,它们从不消失。在没有后侧棘(PL)的情况下,它们仍会以相同的方式变化(表2)。3. 在实验室中,饥饿和低温只会诱导出短的后侧棘(PL)。要诱导出长棘,晶囊轮虫物质总是必不可少的(图2)。这三个因素的影响是相加的。高温似乎会抑制棘 的产生。诱导因素的类型对反应的变异性没有明显影响(图3和图4);即使在反应最大的条件下,标准差也没有降低。4. 棘长度没有明显可识别的短期遗传现象:几乎对每种诱导因素的全部反应在诱导后的第一代中就得以实现(图5)。5. 低温会增加体型。分析表明这种温度效应由两个部分组成,一个作用于卵的大小,另一个作用于动物孵化后的生长(图6和图7)。6. 最终的棘长度总是在孵化前就已确定(图5)。诱导因素决定了幼体的身体比例;孵化后,棘长度呈异速生长。后侧棘(PL)相对于身体的平均生长速率为k = 0.54,即棘的生长速率小于身体的生长速率(负异速生长)。k值似乎是一个常数,至少它不受棘诱导类型、初始棘长度以及孵化后条件的影响(表4和图9)。7. 利用异速生长关系,定义了一个棘长度指数(I ),它与体型无关。I 允许对具有不同年龄结构的种群以及同一样本中的年龄(大小)类别进行定量比较。样本中年龄类别的I 值之间的差异表明棘诱导因素的波动(图10)。因此,通过研究单个浮游生物样本,有可能估计之前时期棘诱导因素的强度(图11和图12)。8. 开发了一种可重复的生物测定方法来测试培养基的棘诱导活性。定义了晶囊轮虫物质的一个相对单位(as)。每单位体积和每单位时间产生的物质数量与晶囊轮虫密度成正比,并受温度影响(在10至25℃范围内:Q = 4)。在20℃下,1毫升培养基中1只晶囊轮虫在25秒内产生的物质数量将在实验性的臂尾轮虫克隆中诱导出刚好可识别的棘。表6给出了在10℃、15℃和25℃下物质产生的进一步数据。该物质呈指数分解(图14a)。这种分解速度受温度影响。在所研究的温度范围内,半衰期从1天到3天不等(图14b)。理论上,活性物质的特定平衡浓度对应于晶囊轮虫的每个种群密度。这个浓度可以使用产生和分解的数据来计算(表6)。然而,在实验种群以及野外,实际浓度总是大大低于根据晶囊轮虫密度预期的值。这一事实表明臂尾轮虫会摄取该物质。因此,通过假设物质不会积累超过24小时,对晶囊轮虫物质的理论平衡进行了务实的修正。通过这种修正,实验室和野外种群中预期的和观察到的棘指数之间有很好的一致性。9. 对三种棘诱导因素有效性的定量比较表明,在自然条件下,温度和饥饿不能诱导出长棘(平均I > 0.3),而一定是由于晶囊轮虫物质(图17)。10. 在野外,晶囊轮虫物质是最重要的因素。生物测定表明,所有含有晶囊轮虫的池塘的水都具有棘诱导活性(表7)。西氏晶囊轮虫(s.l.)和前棘晶囊轮虫都有效。幼体臂尾轮虫的棘指数与当时的晶囊轮虫密度有很好的相关性(图20 - 22)。成体臂尾轮虫指数的相关性显示出与动物年龄相对应的时间滞后。在晶囊轮虫消失后,棘指数会随着与年龄相关的时间滞后而下降。野外温度的棘诱导影响比实验室中的要低(图23)。讨论了野外未知因素可能产生的影响。11. 测试了来自不同池塘的两个种群的反应规范。在相同的诱导条件下,它们表现出显著且明显不同的I 值(图2),在所有三种诱导因素下都是如此。12. 讨论了棘产生背后的假设机制;指出了三种棘诱导因素在生理机制上可能存在的差异。讨论了棘长度变化的适应价值的一些方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验