Kingsolver Joel G, Daniel Thomas L
Department of Zoology, University of California, 94720, Berkeley, CA, USA.
Department of Zoology, Duke University, 27706, Durham, NC, USA.
Oecologia. 1983 Nov;60(2):214-226. doi: 10.1007/BF00379523.
To explore the mechanical determinants of feeding strategies for nectar feeders, we develop a fluid dynamical and behavioral model describing the mechanics and energetics of capillary feeding in hummingbirds. Behavioral and morphological data for Calypte and Archilochus are used to test and illustrate this model. We emphasize the important differences between capillary and suction mechanisms of fluid feeding. Model predictions of nectar intake rates and nectar volumes per lick are consistent with observed values for Calypte anna. The optimal nectar concentration maximizing rate of energy intake depends on tongue morphology and licking behavior. For hummingbirds exhibiting optimal licking behavior, the optimal nectar concentration is 35-40% sucrose for feeding on large nectar volumes. For small nectar volumes, the optimal concentration is 20-25%. The model also identifies certain tongue morphologies and licking frequencies maximizing energy intake, that are consistent with available observations on licking behavior and tongue design in nectar feeding birds. These predictions differ qualitatively from previous results for suction feeding in butterflies.The model predicts that there is a critical food canal radius above which suction feeding is superior to capillary feeding in maximizing the rate of energy intake; the tongues of most hummingbirds and sunbirds fall above this critical radius. The development of suction feeding by nectarivorous birds may be constrained by the elastic properties of their flexible tongues. Our results show that, in terms of morphology, scaling, and energetics, different mechanisms of feeding on the same food resource can lead to qualitatively different predictions about optimal design and feeding strategies.
为了探究花蜜吸食者取食策略的力学决定因素,我们建立了一个流体动力学和行为模型,描述蜂鸟毛细血管取食的力学和能量学。使用了卡利普特(Calypte)和阿奇洛科斯(Archilochus)的行为和形态学数据来测试和阐释该模型。我们强调了流体取食的毛细血管机制和吸食机制之间的重要差异。花蜜摄入量和每次舔舐的花蜜量的模型预测与安娜卡利普特(Calypte anna)的观测值一致。使能量摄入速率最大化的最佳花蜜浓度取决于舌头形态和舔舐行为。对于表现出最佳舔舐行为的蜂鸟,以大量花蜜为食时,最佳花蜜浓度为35 - 40%的蔗糖。对于少量花蜜,最佳浓度为20 - 25%。该模型还确定了某些使能量摄入最大化的舌头形态和舔舐频率,这与花蜜取食鸟类舔舐行为和舌头设计的现有观测结果一致。这些预测在性质上与先前关于蝴蝶吸食取食的结果不同。该模型预测存在一个临界食物通道半径,超过这个半径,在使能量摄入速率最大化方面,吸食取食优于毛细血管取食;大多数蜂鸟和太阳鸟的舌头超过这个临界半径。食蜜鸟类吸食取食的发展可能受到其灵活舌头弹性特性的限制。我们的结果表明,在形态、比例和能量学方面,以相同食物资源为食的不同机制会导致关于最佳设计和取食策略的性质不同的预测。