Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt B):3060-3069. doi: 10.1016/j.bbagen.2017.03.008. Epub 2017 Mar 14.
Reliable tools that allow precise and predictable control over gene expression are critical for the success of nearly all bioengineering applications. Translation initiation is the most regulated phase during protein biosynthesis, and is therefore a promising target for exerting control over gene expression. At the translational level, the copy number of a protein can be fine-tuned by altering the interaction between the translation initiation region of an mRNA and the ribosome. These interactions can be controlled by modulating the mRNA structure using numerous approaches, including small molecule ligands, RNAs, or RNA-binding proteins. A variety of naturally occurring regulatory elements have been repurposed, facilitating advances in synthetic gene regulation strategies. The pursuit of a comprehensive understanding of mechanisms governing translation initiation provides the framework for future engineering efforts.
Here we outline state-of-the-art strategies used to predictably control translation initiation in bacteria. We also discuss current limitations in the field and future goals.
Due to its function as the rate-determining step, initiation is the ideal point to exert effective translation regulation. Several engineering tools are currently available to rationally design the initiation characteristics of synthetic mRNAs. However, improvements are required to increase the predictability, effectiveness, and portability of these tools.
Predictable and reliable control over translation initiation will allow greater predictability when designing, constructing, and testing genetic circuits. The ability to build more complex circuits predictably will advance synthetic biology and contribute to our fundamental understanding of the underlying principles of these processes. "This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
可靠的工具,能够精确且可预测地控制基因表达,这对几乎所有的 生物工程应用的成功都至关重要。翻译起始是蛋白质生物合成中最受调控的阶段,因此是对基因表达进行控制的有前途的目标。在翻译水平上,可以通过改变 mRNA 的翻译起始区与核糖体之间的相互作用来微调蛋白质的拷贝数。这些相互作用可以通过使用多种方法来控制 mRNA 结构来进行控制,包括小分子配体、RNA 或 RNA 结合蛋白。许多自然发生的调节元件已经被重新利用,促进了合成基因调控策略的发展。对控制翻译起始的机制的全面理解的追求为未来的工程努力提供了框架。
本文概述了用于可预测地控制细菌中翻译起始的最新策略。我们还讨论了该领域的当前限制和未来目标。
由于它是决定速率的步骤,起始是发挥有效翻译调节的理想点。目前有几种工程工具可用于合理设计合成 mRNA 的起始特性。然而,需要改进这些工具,以提高它们的可预测性、有效性和可移植性。
可预测和可靠的翻译起始控制将允许在设计、构建和测试遗传电路时具有更大的可预测性。能够可预测地构建更复杂的电路将推进合成生物学,并有助于我们对这些过程基本原理的理解。“本文是特刊“合成生物学的生物化学-最新进展”的一部分,客座编辑:Ilka Heinemann 博士和 Patrick O'Donoghue 博士。