Suppr超能文献

从科学计量学角度看密度泛函理论(DFT)研究的发展。

Evolution of DFT studies in view of a scientometric perspective.

作者信息

Haunschild Robin, Barth Andreas, Marx Werner

机构信息

Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.

FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

出版信息

J Cheminform. 2016 Oct 5;8:52. doi: 10.1186/s13321-016-0166-y. eCollection 2016.

Abstract

BACKGROUND

This bibliometric study aims to analyze the publications in which density functional theory (DFT) plays a major role. The bibliometric analysis is performed on the full publication volume of 114,138 publications as well as sub-sets defined in terms of six different types of compounds and nine different research topics. Also, a compound analysis is presented that shows how many compounds with specific elements are known to be calculated with DFT. This analysis is done for each element from hydrogen to nobelium.

RESULTS

We find that hydrogen, carbon, nitrogen, and oxygen occur most often in compounds calculated with DFT in terms of absolute numbers, but a relative perspective shows that DFT calculations were performed rather often in comparison with experiments for rare gas elements, many actinides, some transition metals, and polonium.

CONCLUSIONS

The annual publication volume of DFT literature continues to grow steadily. The number of publications doubles approximately every 5-6 years while a doubling of publication volume every 11 years is observed for the CAplus database (14 years if patents are excluded). Calculations of the structure and energy of compounds dominate the DFT literature.

摘要

背景

本文献计量学研究旨在分析以密度泛函理论(DFT)为主导的出版物。对114138篇出版物的全部出版量以及根据六种不同类型的化合物和九个不同的研究主题定义的子集进行文献计量分析。此外,还进行了化合物分析,展示了已知使用DFT计算的含有特定元素的化合物数量。对从氢到锘的每种元素都进行了此分析。

结果

我们发现,就绝对数量而言,氢、碳、氮和氧在使用DFT计算的化合物中出现最为频繁,但从相对角度来看,与稀有气体元素、许多锕系元素、一些过渡金属和钋的实验相比,DFT计算进行得相当频繁。

结论

DFT文献的年出版量持续稳步增长。出版物数量大约每5 - 6年翻一番,而CAplus数据库的出版量每11年翻一番(如果排除专利则为14年)。化合物结构和能量的计算在DFT文献中占主导地位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f76/5053213/7a8cae355af4/13321_2016_166_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验