Suppr超能文献

心电图信号的复音声化为心脏病变诊断。

Polyphonic sonification of electrocardiography signals for diagnosis of cardiac pathologies.

机构信息

Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

Department of Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany.

出版信息

Sci Rep. 2017 Mar 20;7:44549. doi: 10.1038/srep44549.

Abstract

Electrocardiography (ECG) data are multidimensional temporal data with ubiquitous applications in the clinic. Conventionally, these data are presented visually. It is presently unclear to what degree data sonification (auditory display), can enable the detection of clinically relevant cardiac pathologies in ECG data. In this study, we introduce a method for polyphonic sonification of ECG data, whereby different ECG channels are simultaneously represented by sound of different pitch. We retrospectively applied this method to 12 samples from a publicly available ECG database. We and colleagues from our professional environment then analyzed these data in a blinded way. Based on these analyses, we found that the sonification technique can be intuitively understood after a short training session. On average, the correct classification rate for observers trained in cardiology was 78%, compared to 68% and 50% for observers not trained in cardiology or not trained in medicine at all, respectively. These values compare to an expected random guessing performance of 25%. Strikingly, 27% of all observers had a classification accuracy over 90%, indicating that sonification can be very successfully used by talented individuals. These findings can serve as a baseline for potential clinical applications of ECG sonification.

摘要

心电图(ECG)数据是具有普遍应用的多维时间数据。传统上,这些数据以视觉方式呈现。目前尚不清楚声音信号处理(听觉显示)在多大程度上可以帮助检测心电图数据中的临床相关心脏病理。在这项研究中,我们引入了一种心电图数据的复调声音信号处理方法,其中不同的心电图通道通过不同音高的声音同时表示。我们回顾性地将这种方法应用于一个公开的心电图数据库中的 12 个样本。然后,我们和来自专业环境的同事以盲法分析这些数据。基于这些分析,我们发现,经过短暂的培训,这种声音信号处理技术可以直观地理解。经过心脏病学培训的观察者的平均正确分类率为 78%,而未经心脏病学或医学培训的观察者的正确分类率分别为 68%和 50%。这些值与预期的随机猜测性能 25%相比有所提高。引人注目的是,所有观察者中有 27%的分类准确率超过 90%,这表明声音信号处理可以被有天赋的个体非常成功地应用。这些发现可以作为心电图声音信号处理潜在临床应用的基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/605f/5357951/8ce33f926dba/srep44549-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验