European Molecular Biology Laboratory, Heidelberg, Germany.
Nat Methods. 2010 Mar;7(3 Suppl):S26-41. doi: 10.1038/nmeth.1431.
Advances in imaging techniques and high-throughput technologies are providing scientists with unprecedented possibilities to visualize internal structures of cells, organs and organisms and to collect systematic image data characterizing genes and proteins on a large scale. To make the best use of these increasingly complex and large image data resources, the scientific community must be provided with methods to query, analyze and crosslink these resources to give an intuitive visual representation of the data. This review gives an overview of existing methods and tools for this purpose and highlights some of their limitations and challenges.
成像技术和高通量技术的进步为科学家提供了前所未有的可能性,可以可视化细胞、器官和生物体的内部结构,并大规模收集系统的图像数据来描绘基因和蛋白质。为了充分利用这些日益复杂和庞大的图像数据资源,必须为科学界提供查询、分析和链接这些资源的方法,以便直观地展示数据。本文综述了目前用于此目的的方法和工具,并强调了它们的一些局限性和挑战。
Nat Methods. 2010-3
Am J Med Genet A. 2007-12-15
Cold Spring Harb Protoc. 2012-1-1
Am J Physiol Lung Cell Mol Physiol. 2003-8
Br J Radiol. 2004
BMC Bioinformatics. 2011-4-28
J Biomed Semantics. 2016-6-7
FEBS Lett. 2022-10
bioRxiv. 2025-8-23
In Vitro Model. 2023-1-27
IEEE Trans Vis Comput Graph. 2025-1
Front Bioinform. 2021-6-17
Nat Methods. 2010-3
Nucleic Acids Res. 2009-9-18
Cytoskeleton (Hoboken). 2010-1
Nat Methods. 2009-6
Annu Rev Biophys. 2009
Philos Trans A Math Phys Eng Sci. 2009-6-13
Bioinformatics. 2009-4-17