Idrobo-Ávila Ennio, Loaiza-Correa Humberto, Vargas-Cañas Rubiel, Muñoz-Bolaños Flavio, van Noorden Leon
PSI - Percepción y Sistemas Inteligentes, Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle, Cali, Colombia.
SIDICO - Sistemas Dinámicos de Instrumentación y Control, Departamento de Física, Universidad del Cauca, Popayán, Colombia.
Heliyon. 2021 Feb 20;7(2):e06257. doi: 10.1016/j.heliyon.2021.e06257. eCollection 2021 Feb.
The electrocardiogram is traditionally used to diagnose a large number of heart pathologies. Research to improve the readability and classification of cardiac signals includes studies geared toward sonification of the electrocardiographic signal and others involving features related to music processing, such as Mel-frequency cepstral coefficients. In terms of music processing features, this study seeks to use music information retrieval (MIR) features as electrocardiographic signal descriptors. The study compares the discriminatory capability of the introduced features in relation to standard groups such as heart rate variability, wavelet transform, descriptive statistics, Mel coefficients and fractal analysis, evaluated using classification algorithms; the signals analyzed were extracted from public databases. The group of features extracted from wavelet transform and the MIR group showed a high level of discrimination; the best representation of the ECG signals in the study was achieved in most cases by the MIR features. Moreover, a correlation coefficient higher than 0.8 was found between a number of MIR and other feature groups, indicating a likely relationship between the electrocardiographic signals and MIR features. These results suggest the feasibility of representing the analyzed signals by music information retrieval descriptors, giving the potential to consider these electrocardiographic signals as analogues to musical signals.
传统上,心电图用于诊断大量心脏疾病。旨在提高心脏信号可读性和分类的研究包括针对心电图信号可听化的研究,以及其他涉及与音乐处理相关特征(如梅尔频率倒谱系数)的研究。就音乐处理特征而言,本研究旨在使用音乐信息检索(MIR)特征作为心电图信号描述符。该研究使用分类算法,比较了所引入特征相对于心率变异性、小波变换、描述性统计、梅尔系数和分形分析等标准组的判别能力;所分析的信号是从公共数据库中提取的。从小波变换提取的特征组和MIR组显示出高度的判别能力;在大多数情况下,该研究中心电图信号的最佳表示是通过MIR特征实现的。此外,在多个MIR与其他特征组之间发现了高于0.8的相关系数,表明心电图信号与MIR特征之间可能存在关系。这些结果表明用音乐信息检索描述符表示所分析信号的可行性,这使得有可能将这些心电图信号视为音乐信号的类似物。