Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr, Lawrence, KS 66047, USA.
Metallomics. 2017 Jun 21;9(6):646-659. doi: 10.1039/c7mt00042a.
Iron is an essential nutrient for bacteria but the reactivity of Fe and the insolubility of Fe present significant challenges to bacterial cells. Iron storage proteins contribute to ameliorating these challenges by oxidizing Fe using O and HO as electron acceptors, and by compartmentalizing Fe. Two types of iron-storage proteins coexist in bacteria, the ferritins (Ftn) and the heme-containing bacterioferritins (Bfr), but the reasons for their coexistence are largely unknown. P. aeruginosa cells harbor two iron storage proteins (FtnA and BfrB), but nothing is known about their relative contributions to iron homeostasis. Prior studies in vitro have shown that iron mobilization from BfrB requires specific interactions with a ferredoxin (Bfd), but the relevance of the BfrB:Bfd interaction to iron homeostasis in P. aeruginosa is unknown. In this work we explore the repercussions of (i) deleting the bfrB gene, and (ii) perturbing the BfrB:Bfd interaction in P. aeruginosa cells by either deleting the bfd gene or by replacing the wild type bfrB gene with a L68A/E81A double mutant allele in the P. aeruginosa chromosome. The effects of the mutations were evaluated by following the accumulation of iron in BfrB, analyzing levels of free and total intracellular iron, and by characterizing the ensuing iron homeostasis dysregulation phenotypes. The results reveal that P. aeruginosa accumulates iron mainly in BfrB, and that the nutrient does not accumulate in FtnA to detectable levels, even after deletion of the bfrB gene. Perturbing the BfrB:Bfd interaction causes irreversible flow of iron into BfrB, which leads to the accumulation of unusable intracellular iron while severely depleting the levels of free intracellular iron, which drives the cells to an acute iron starvation response despite harboring "normal" levels of total intracellular iron. These results are discussed in the context of a dynamic equilibrium between free cytosolic Fe and Fe compartmentalized in BfrB, which functions as a buffer to oppose rapid changes of free cytosolic iron. Finally, we also show that P. aeruginosa cells utilize iron stored in BfrB for growth in iron-limiting conditions, and that the utilization of BfrB-iron requires a functional BfrB:Bfd interaction.
铁是细菌必需的营养物质,但 Fe 的反应性和 Fe 的不溶性对细菌细胞构成了重大挑战。铁储存蛋白通过使用 O 和 HO 作为电子受体氧化 Fe 并分隔 Fe 来缓解这些挑战。两种类型的铁储存蛋白共存于细菌中,即铁蛋白 (Ftn) 和含血红素的菌铁蛋白 (Bfr),但它们共存的原因在很大程度上尚不清楚。铜绿假单胞菌细胞中含有两种铁储存蛋白 (FtnA 和 BfrB),但对它们在铁稳态中的相对贡献知之甚少。先前的体外研究表明,从 BfrB 中动员铁需要与一种铁氧还蛋白 (Bfd) 进行特定相互作用,但 BfrB:Bfd 相互作用与铜绿假单胞菌中铁稳态的相关性尚不清楚。在这项工作中,我们探讨了以下两种情况的后果:(i)删除 bfrB 基因,以及(ii)通过删除 bfd 基因或用 L68A/E81A 双突变等位基因替换铜绿假单胞菌染色体上的野生型 bfrB 基因,干扰铜绿假单胞菌细胞中的 BfrB:Bfd 相互作用。通过跟踪 BfrB 中铁的积累、分析游离和总细胞内铁的水平以及表征随之而来的铁稳态失调表型,评估突变的影响。结果表明,铜绿假单胞菌主要在 BfrB 中积累铁,并且即使删除了 bfrB 基因,铁也不会积累到可检测水平的 FtnA。干扰 BfrB:Bfd 相互作用会导致铁不可逆地流入 BfrB,从而导致无法使用的细胞内铁积累,同时严重耗尽游离细胞内铁的水平,这导致细胞对急性铁饥饿反应,尽管其总细胞内铁水平“正常”。这些结果在游离细胞浆 Fe 和位于 BfrB 中的 Fe 之间的动态平衡的背景下进行了讨论,该平衡作为缓冲液,以对抗游离细胞浆铁的快速变化。最后,我们还表明,铜绿假单胞菌细胞利用 BfrB 中储存的铁在缺铁条件下生长,并且 BfrB-铁的利用需要功能性 BfrB:Bfd 相互作用。