Suppr超能文献

铜绿假单胞菌中有两种不同的铁蛋白样分子:bfrA 基因的产物是一种细菌铁蛋白(FtnA),而不是细菌血晶素(Bfr)。

Two distinct ferritin-like molecules in Pseudomonas aeruginosa: the product of the bfrA gene is a bacterial ferritin (FtnA) and not a bacterioferritin (Bfr).

机构信息

Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA.

出版信息

Biochemistry. 2011 Jun 14;50(23):5236-48. doi: 10.1021/bi2004119. Epub 2011 May 20.

Abstract

Two distinct types of ferritin-like molecules often coexist in bacteria, the heme binding bacterioferritins (Bfr) and the non-heme binding bacterial ferritins (Ftn). The early isolation of a ferritin-like molecule from Pseudomonas aeruginosa suggested the possibility of a bacterioferritin assembled from two different subunits [Moore, G. R., et al. (1994) Biochem. J. 304, 493-497]. Subsequent studies demonstrated the presence of two genes encoding ferritin-like molecules in P. aeruginosa, designated bfrA and bfrB, and suggested that two distinct bacterioferritins may coexist [Ma, J.-F., et al. (1999) J. Bacteriol. 181, 3730-3742]. In this report, we present structural evidence demonstrating that the product of the bfrA gene is a ferritin-like molecule not capable of binding heme that harbors a catalytically active ferroxidase center with structural properties similar to those characteristic of bacterial and archaeal Ftns and clearly distinct from those of the ferroxidase center typical of Bfrs. Consequently, the product of the bfrA gene in P. aeruginosa is a bacterial ferritin, which we propose should be termed Pa FtnA. These results, together with the previous characterization of the product of the bfrB gene as a genuine bacterioferritin (Pa BfrB) [Weeratunga, S. J., et al. (2010) Biochemistry 49, 1160-1175], indicate the coexistence of a bacterial ferritin (Pa FtnA) and a bacterioferritin (Pa BfrB) in P. aeruginosa. In agreement with this idea, we also obtained evidence demonstrating that release of iron from Pa BfrB and Pa FtnA is likely subject to different regulation in P. aerugionsa. Whereas the efficient release of iron stored in Pa FtnA requires only the input of electrons from a ferredoxin NADP reductase (Pa Fpr), the release of iron stored in Pa BfrB requires not only electron delivery by Pa Fpr but also the presence of a "regulator", the apo form of a bacterioferritin-associated ferredoxin (apo Pa Bfd). Finally, structural analysis of iron uptake in crystallo suggests a possible pathway for the internalization of ferroxidase iron into the interior cavity of Pa FtnA.

摘要

两种不同类型的铁蛋白样分子经常共存于细菌中,即血红素结合菌铁蛋白(Bfr)和非血红素结合细菌铁蛋白(Ftn)。从铜绿假单胞菌中早期分离出一种铁蛋白样分子,表明可能存在由两种不同亚基组成的菌铁蛋白[Moore, G. R., et al. (1994) Biochem. J. 304, 493-497]。随后的研究表明,铜绿假单胞菌中存在两种编码铁蛋白样分子的基因,分别命名为 bfrA 和 bfrB,并表明两种不同的菌铁蛋白可能共存[Ma, J.-F., et al. (1999) J. Bacteriol. 181, 3730-3742]。在本报告中,我们提供了结构证据,证明 bfrA 基因的产物是一种不能结合血红素的铁蛋白样分子,它具有催化活性的亚铁氧化酶中心,其结构特性与细菌和古菌 Ftns 的特性相似,与典型的 Bfrs 的亚铁氧化酶中心明显不同。因此,铜绿假单胞菌中 bfrA 基因的产物是一种细菌铁蛋白,我们建议将其命名为 Pa FtnA。这些结果,加上先前对 bfrB 基因产物作为真正菌铁蛋白(Pa BfrB)的特征描述[Weeratunga, S. J., et al. (2010) Biochemistry 49, 1160-1175],表明铜绿假单胞菌中存在一种细菌铁蛋白(Pa FtnA)和一种菌铁蛋白(Pa BfrB)。与这一观点一致,我们还获得了证据,证明铁从 Pa BfrB 和 Pa FtnA 中的释放可能受到铜绿假单胞菌中不同的调控。虽然仅需要铁蛋白 NADP 还原酶(Pa Fpr)提供电子,才能有效地从 Pa FtnA 中释放储存的铁,但从 Pa BfrB 中释放储存的铁不仅需要 Pa Fpr 传递电子,还需要一种“调节剂”,即与菌铁蛋白相关的铁蛋白的脱辅基形式(apo Pa Bfd)。最后,晶体中铁摄取的结构分析表明了铁氧还蛋白铁内化到 Pa FtnA 内部腔室的可能途径。

相似文献

2
Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization.
Acc Chem Res. 2017 Feb 21;50(2):331-340. doi: 10.1021/acs.accounts.6b00514. Epub 2017 Feb 8.
6
The structure of the BfrB-Bfd complex reveals protein-protein interactions enabling iron release from bacterioferritin.
J Am Chem Soc. 2012 Aug 15;134(32):13470-81. doi: 10.1021/ja305180n. Epub 2012 Aug 1.
9
Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic.
Biochemistry. 2015 Mar 3;54(8):1611-27. doi: 10.1021/bi501255r. Epub 2015 Feb 17.
10
Iron storage in bacteria.
Adv Microb Physiol. 1998;40:281-351. doi: 10.1016/s0065-2911(08)60134-4.

引用本文的文献

1
The iron metalloproteome of Pseudomonas aeruginosa under oxic and anoxic conditions.
Metallomics. 2025 Jul 9;17(7). doi: 10.1093/mtomcs/mfaf023.
2
The Iron Metalloproteome of Pseudomonas aeruginosa Under Oxic and Anoxic Conditions.
bioRxiv. 2025 May 15:2025.01.15.633287. doi: 10.1101/2025.01.15.633287.
4
gene PA4880 encodes a Dps-like protein with a Dps fold, bacterioferritin-type ferroxidase centers, and endonuclease activity.
Front Mol Biosci. 2024 May 22;11:1390745. doi: 10.3389/fmolb.2024.1390745. eCollection 2024.
6
Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil.
World J Microbiol Biotechnol. 2023 Jun 20;39(9):228. doi: 10.1007/s11274-023-03681-6.
8
Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process.
Microb Biotechnol. 2023 Jul;16(7):1475-1491. doi: 10.1111/1751-7915.14241. Epub 2023 Mar 1.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor.
Biochim Biophys Acta. 2010 Aug;1800(8):691-705. doi: 10.1016/j.bbagen.2010.05.010. Epub 2010 May 27.
3
Iron core mineralisation in prokaryotic ferritins.
Biochim Biophys Acta. 2010 Aug;1800(8):732-44. doi: 10.1016/j.bbagen.2010.04.002. Epub 2010 Apr 11.
4
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.
6
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
8
The crystal structure of ferritin from Helicobacter pylori reveals unusual conformational changes for iron uptake.
J Mol Biol. 2009 Jul 3;390(1):83-98. doi: 10.1016/j.jmb.2009.04.078. Epub 2009 May 7.
9
Structural basis for iron mineralization by bacterioferritin.
J Am Chem Soc. 2009 May 20;131(19):6808-13. doi: 10.1021/ja8093444.
10
Genetics and environmental regulation of Shigella iron transport systems.
Biometals. 2009 Feb;22(1):43-51. doi: 10.1007/s10534-008-9188-x. Epub 2009 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验