Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States.
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):12138-12145. doi: 10.1021/acsami.7b02257. Epub 2017 Mar 24.
In this work, poly(vinyl alcohol) (PVA)/amino acid (AA) composites were prepared by a self-organized crystallization process. Five different AAs (cysteine, aspartic acid, glutamic acid, ornithine, and lysine) were selected based on their similar functional groups but different molecular structures. The different PVA-AA interactions in the five PVA/AA composites lead to two crystal patterns, i.e., continuous network (cysteine and lysine) and discrete particles (glutamic acid, ornithine, and aspartic acid). Scanning thermal microscopy is then applied to map the distribution of thermal conduction in these composites. It is found that the interface surrounding the crystals plays a dominating role in phonon transport where the polymer chains are greatly restrained by the interfacial confinement effect. Continuous crystal network builds up a continuous interface that facilitates phonon transfer while phonon scattering occurs in discrete crystalline structures. Significantly improved thermal conductivity of ∼0.7 W/m·K is observed in PVA/cysteine composite with AA loading of 8.4 wt %, which corresponds to a 170% enhancement as compared to pure PVA. The strong PVA-AA molecular interaction and self-organized crystal structure are considered the major reasons for the unique interface property and superior thermal conductivity.
在这项工作中,通过自组织结晶过程制备了聚乙烯醇(PVA)/氨基酸(AA)复合材料。根据相似的官能团但不同的分子结构,选择了五种不同的 AA(半胱氨酸、天冬氨酸、谷氨酸、鸟氨酸和赖氨酸)。五种 PVA/AA 复合材料中不同的 PVA-AA 相互作用导致了两种晶体形态,即连续网络(半胱氨酸和赖氨酸)和离散颗粒(谷氨酸、鸟氨酸和天冬氨酸)。然后应用扫描热显微镜来绘制这些复合材料中热传导的分布。结果发现,晶体周围的界面在声子输运中起着主导作用,其中聚合物链受到界面限制效应的极大限制。连续的晶体网络形成了连续的界面,有利于声子传递,而离散的晶体结构则会发生声子散射。在 AA 负载为 8.4wt%的 PVA/半胱氨酸复合材料中观察到约 0.7W/m·K 的显著改善的热导率,与纯 PVA 相比提高了 170%。强的 PVA-AA 分子相互作用和自组织晶体结构被认为是独特界面性质和优异热导率的主要原因。