Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, China.
Department of Nano Science and Technology Institute, University of Science and Technology of China , Suzhou 215123, China.
ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13544-13553. doi: 10.1021/acsami.7b02410. Epub 2017 Apr 5.
In this work, we report a fabrication of epoxy resin/ordered three-dimensional boron nitride (3D-BN) network composites through combination of ice-templating self-assembly and infiltration methods. The polymer composites possess much higher thermal conductivity up to 4.42 W m K at relatively low loading 34 vol % than that of random distribution composites (1.81 W m K for epoxy/random 3D-BN composites, 1.16 W m K for epoxy/random BN composites) and exhibit a high glass transition temperature (178.9-229.2 °C) and dimensional stability (22.7 ppm/K). We attribute the increased thermal conductivity to the unique oriented 3D-BN thermally conducive network, in which the much higher thermal conductivity along the in-plane direction of BN microplatelets is most useful. This study paves the way for thermally conductive polymer composites used as thermal interface materials for next-generation electronic packaging and 3D integration circuits.
在这项工作中,我们通过冰模板自组装和渗透方法的结合,制备了环氧树脂/有序三维氮化硼(3D-BN)网络复合材料。与随机分布复合材料相比(环氧树脂/随机 3D-BN 复合材料为 1.81 W m K,环氧树脂/随机 BN 复合材料为 1.16 W m K),聚合物复合材料在相对较低的负载 34 体积%下具有更高的热导率,高达 4.42 W m K,并且表现出高玻璃化转变温度(178.9-229.2°C)和尺寸稳定性(22.7 ppm/K)。我们将热导率的提高归因于独特的定向 3D-BN 热导网络,其中 BN 微片的平面内方向的热导率要高得多,这是最有用的。这项研究为用作下一代电子封装和 3D 集成电路的热界面材料的导热聚合物复合材料铺平了道路。