Santabarbara Stefano, Tibiletti Tania, Remelli William, Caffarri Stefano
Photosynthesis Research Unit, Centro di Studio per la Biologia Cellulare e Molecolare delle Piante, Via Celoria 26, 20133 Milan, Italy.
Aix Marseille Univ, CEA, CNRS UMR7265 BVME, Laboratoire de Génétique et Biophysique des Plantes, Marseille 13009, France.
Phys Chem Chem Phys. 2017 Mar 29;19(13):9210-9222. doi: 10.1039/c7cp00554g.
State transitions are a phenomenon that maintains the excitation balance between photosystem II (PSII) and photosystem I (PSI-LHCI) by controlling their relative absorption cross-sections. Under light conditions exciting PSII preferentially, a trimeric LHCII antenna moves from PSII to PSI-LHCI to form the PSI-LHCI-LHCII supercomplex. In this work, the excited state dynamics in the PSI-LHCI and PSI-LHCI-LHCII supercomplexes isolated from Arabidopsis have been investigated by picosecond time-resolved fluorescence spectroscopy. The excited state decays were analysed using two approaches based on either (i) a sum of discrete exponentials or (ii) a continuous distribution of lifetimes. The results indicate that the energy transfer from LHCII to the bulk of the PSI antenna occurs with an average macroscopic transfer rate in the 35-65 ns interval. Yet, the most satisfactory description of the data is obtained when considering a heterogeneous population containing two PSI-LHCI-LHCII supercomplexes characterised by a transfer time of ∼15 and ∼60 ns, likely due to the differences in the strength and orientation of LHCII harboured to PSI. Both these values are of the same order of magnitude of those estimated for the average energy transfer rates from the low energy spectral forms of LHCI to the bulk of the PSI antenna (15-40 ns), but they are slower than the transfer from the bulk antenna of PSI to the reaction centre (>150 ns), implying a relatively small kinetics bottleneck for the energy transfer from LHCII. Nevertheless, the kinetic limitation imposed by excited state diffusion has a negligible impact on the photochemical quantum efficiency of the supercomplex, which remains about 98% in the case of PSI-LHCI.
状态转换是一种通过控制光系统II(PSII)和光系统I(PSI-LHCI)的相对吸收截面来维持它们之间激发平衡的现象。在优先激发PSII的光照条件下,三聚体LHCII天线从PSII移动到PSI-LHCI,形成PSI-LHCI-LHCII超复合物。在这项工作中,通过皮秒时间分辨荧光光谱研究了从拟南芥中分离出的PSI-LHCI和PSI-LHCI-LHCII超复合物中的激发态动力学。使用两种方法分析激发态衰变,一种基于(i)离散指数之和,另一种基于(ii)寿命的连续分布。结果表明,LHCII向PSI天线主体的能量转移以35-65 ns区间的平均宏观转移速率发生。然而,当考虑包含两个PSI-LHCI-LHCII超复合物的异质群体时,对数据的描述最为满意,其特征转移时间约为15和60 ns,这可能是由于LHCII与PSI结合的强度和方向不同所致。这两个值与从LHCI的低能光谱形式到PSI天线主体的平均能量转移速率估计值(15-40 ns)处于同一数量级,但它们比从PSI的主体天线到反应中心的转移(>150 ns)要慢,这意味着LHCII能量转移的动力学瓶颈相对较小。尽管如此,激发态扩散所施加的动力学限制对超复合物的光化学量子效率影响可忽略不计,在PSI-LHCI的情况下,光化学量子效率仍约为98%。