Russo Mattia, Casazza Anna Paola, Cerullo Giulio, Santabarbara Stefano, Maiuri Margherita
Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy.
J Phys Chem B. 2021 Apr 15;125(14):3566-3573. doi: 10.1021/acs.jpcb.1c01498. Epub 2021 Mar 31.
The overall efficiency of photosynthetic energy conversion depends both on photochemical and excitation energy transfer processes from extended light-harvesting antenna networks. Understanding the trade-offs between increase in the antenna cross section and bandwidth and photochemical conversion efficiency is of central importance both from a biological perspective and for the design of biomimetic artificial photosynthetic complexes. Here, we employ two-dimensional electronic spectroscopy to spectrally resolve the excitation energy transfer dynamics and directly correlate them with the initial site of excitation in photosystem I-light harvesting complex I (PSI-LHCI) supercomplex of land plants, which has both a large antenna dimension and a wide optical bandwidth extending to energies lower than the peak of the reaction center chlorophylls. Upon preferential excitation of the low-energy chlorophylls (red forms), the average relaxation time in the bulk supercomplex increases by a factor of 2-3 with respect to unselective excitation at higher photon energies. This slowdown is interpreted in terms of an excitation energy transfer limitation from low-energy chlorophyll forms in the PSI-LHCI. These results aid in defining the optimum balance between the extension of the antenna bandwidth to the near-infrared region, which increases light-harvesting capacity, and high photoconversion quantum efficiency.
光合能量转换的整体效率既取决于光化学过程,也取决于来自扩展光捕获天线网络的激发能量转移过程。从生物学角度以及仿生人工光合复合物的设计角度来看,理解天线横截面增加与带宽以及光化学转换效率之间的权衡至关重要。在这里,我们采用二维电子光谱来光谱分辨激发能量转移动力学,并将其与陆地植物光系统I-光捕获复合物I(PSI-LHCI)超复合物中的初始激发位点直接关联起来,该超复合物具有较大的天线尺寸和延伸至低于反应中心叶绿素峰值能量的宽光学带宽。在优先激发低能量叶绿素(红色形式)时,相对于在较高光子能量下的非选择性激发,整体超复合物中的平均弛豫时间增加了2至3倍。这种减慢被解释为PSI-LHCI中低能量叶绿素形式的激发能量转移限制。这些结果有助于确定将天线带宽扩展到近红外区域(这会增加光捕获能力)与高光转换量子效率之间的最佳平衡。