Suppr超能文献

荷兰人群中符号数字模式测验基于回归的常模:能否改善多发性硬化症认知障碍的检测?

Regression-Based Norms for the Symbol Digit Modalities Test in the Dutch Population: Improving Detection of Cognitive Impairment in Multiple Sclerosis?

作者信息

Burggraaff Jessica, Knol Dirk L, Uitdehaag Bernard M J

机构信息

Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

Eur Neurol. 2017;77(5-6):246-252. doi: 10.1159/000464405. Epub 2017 Mar 21.

Abstract

BACKGROUND/AIMS: Appropriate and timely screening instruments that sensitively capture the cognitive functioning of multiple sclerosis (MS) patients are the need of the hour. We evaluated newly derived regression-based norms for the Symbol Digit Modalities Test (SDMT) in a Dutch-speaking sample, as an indicator of the cognitive state of MS patients.

METHODS

Regression-based norms for the SDMT were created from a healthy control sample (n = 96) and used to convert MS patients' (n = 157) raw scores to demographically adjusted Z-scores, correcting for the effects of age, age2, gender, and education. Conventional and regression-based norms were compared on their impairment-classification rates and related to other neuropsychological measures.

RESULTS

The regression analyses revealed that age was the only significantly influencing demographic in our healthy sample. Regression-based norms for the SDMT more readily detected impairment in MS patients than conventional normalization methods (32 patients instead of 15). Patients changing from an SDMT-preserved to -impaired status (n = 17) were also impaired on other cognitive domains (p < 0.05), except for visuospatial memory (p = 0.34).

CONCLUSIONS

Regression-based norms for the SDMT more readily detect abnormal performance in MS patients than conventional norms, identifying those patients at highest risk for cognitive impairment, which was supported by a worse performance on other neuropsychological measures.

摘要

背景/目的:当下急需合适且及时的筛查工具,以灵敏地捕捉多发性硬化症(MS)患者的认知功能。我们在一个说荷兰语的样本中评估了新得出的基于回归的符号数字模态测验(SDMT)常模,作为MS患者认知状态的指标。

方法

基于回归的SDMT常模由一个健康对照样本(n = 96)建立,并用于将MS患者(n = 157)的原始分数转换为经人口统计学调整的Z分数,校正年龄、年龄平方、性别和教育程度的影响。比较了传统常模和基于回归的常模的损伤分类率,并将其与其他神经心理学测量指标相关联。

结果

回归分析显示,在我们的健康样本中,年龄是唯一具有显著影响的人口统计学因素。与传统的标准化方法相比,基于回归的SDMT常模能更轻易地检测出MS患者的损伤(32例患者,而非15例)。从SDMT未受损转变为受损状态的患者(n = 17)在其他认知领域也存在损伤(p < 0.05),视觉空间记忆除外(p = 0.34)。

结论

与传统常模相比,基于回归的SDMT常模能更轻易地检测出MS患者的异常表现,识别出认知损伤风险最高的患者,这一点得到了其他神经心理学测量指标较差表现的支持。

相似文献

引用本文的文献

本文引用的文献

6
Subcortical atrophy and cognition: sex effects in multiple sclerosis.皮质下萎缩与认知:多发性硬化症中的性别效应。
Neurology. 2012 Oct 23;79(17):1754-61. doi: 10.1212/WNL.0b013e3182703f46. Epub 2012 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验