Suppr超能文献

DNA中的孢子光产物是其指定修复酶——孢子光产物裂解酶——出奇差的底物。

Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme-The spore photoproduct lyase.

作者信息

Yang Linlin, Jian Yajun, Setlow Peter, Li Lei

机构信息

Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 North Blackford Street, Indianapolis, IN 46202, United States.

Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, United States.

出版信息

DNA Repair (Amst). 2017 May;53:31-42. doi: 10.1016/j.dnarep.2016.11.005. Epub 2017 Mar 6.

Abstract

DNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01-0.2min. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3-0.4min, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.

摘要

DNA修复酶通常以高亲和力识别其底物损伤,以确保高效的损伤修复。在紫外线照射的芽孢中,一种特殊的胸腺嘧啶二聚体,5-胸腺嘧啶基-5,6-二氢胸腺嘧啶,被称为芽孢光产物(SP),是主要的DNA光损伤,在芽孢萌发过程中主要通过芽孢光产物裂解酶(SPL)利用前所未有的蛋白质携带自由基转移过程迅速修复。令人惊讶的是,我们使用含SP的短寡核苷酸、pUC 18质粒DNA和大肠杆菌基因组DNA进行的体外研究发现,它们通常都是SPL的不良底物,周转数为0.01-0.2分钟。在单周转条件下能达到更快的周转数,并且在较高浓度的寡核苷酸底物存在下SPL活性较低。此外,含SP的寡核苷酸不会超过一次周转。相比之下,二核苷酸SP TpT的周转数为0.3-0.4分钟,反应可能达到10次周转。这些观察结果将SPL与其他专门的DNA修复酶区分开来。据我们所知,SPL代表了一个前所未有的主要DNA修复酶的例子,它不能在生长细胞采用的正常DNA构象内有效地修复其底物损伤。其他DNA结合蛋白、解旋酶或改变的DNA构象等因素可能与SPL协同作用,以实现芽孢萌发过程中SP的有效修复。因此,SP的形成和修复可能都受到休眠和生长中的芽孢形成细菌独特细胞环境的严格控制,因此在非芽孢形成生物体中SP修复可能极其缓慢。

相似文献

本文引用的文献

8
Radical S-adenosylmethionine enzymes.自由基S-腺苷甲硫氨酸酶
Chem Rev. 2014 Apr 23;114(8):4229-317. doi: 10.1021/cr4004709. Epub 2014 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验