Suppr超能文献

学习用于人物再识别的对应结构。

Learning Correspondence Structures for Person Re-Identification.

出版信息

IEEE Trans Image Process. 2017 May;26(5):2438-2453. doi: 10.1109/TIP.2017.2683063. Epub 2017 Mar 15.

Abstract

This paper addresses the problem of handling spatial misalignments due to camera-view changes or human-pose variations in person re-identification. We first introduce a boosting-based approach to learn a correspondence structure, which indicates the patchwise matching probabilities between images from a target camera pair. The learned correspondence structure can not only capture the spatial correspondence pattern between cameras but also handle the viewpoint or human-pose variation in individual images. We further introduce a global constraint-based matching process. It integrates a global matching constraint over the learned correspondence structure to exclude cross-view misalignments during the image patch matching process, hence achieving a more reliable matching score between images. Finally, we also extend our approach by introducing a multi-structure scheme, which learns a set of local correspondence structures to capture the spatial correspondence sub-patterns between a camera pair, so as to handle the spatial misalignments between individual images in a more precise way. Experimental results on various data sets demonstrate the effectiveness of our approach.

摘要

本文针对相机视角变化或人体姿态变化导致的人员再识别中的空间失配问题。我们首先引入一种基于提升的方法来学习对应结构,该结构指示目标相机对之间图像的逐块匹配概率。学习到的对应结构不仅可以捕捉相机之间的空间对应模式,还可以处理个别图像中的视角或人体姿态变化。我们进一步引入了一种基于全局约束的匹配过程。它将学习到的对应结构上的全局匹配约束集成到图像块匹配过程中,以排除图像之间的交叉视角失配,从而在图像之间实现更可靠的匹配得分。最后,我们还通过引入多结构方案来扩展我们的方法,该方案学习一组局部对应结构来捕获相机对之间的空间对应子模式,从而以更精确的方式处理个别图像之间的空间失配。在各种数据集上的实验结果表明了我们方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验