IEEE J Biomed Health Inform. 2017 Nov;21(6):1617-1624. doi: 10.1109/JBHI.2017.2681688. Epub 2017 Mar 13.
Multi-plane super-resolution (SR) has been widely employed for resolution improvement of MR images. However, this has mostly been limited to MRI acquisitions with rigid motion. In cases of non-rigid motion, volumes are usually pre-registered using deformable registration methods before SR reconstruction. The pre-registered images are then used as input for the SR reconstruction. Since deformable registration involves smoothening of the inputs, using pre-registered inputs could lead to loss in information in SR reconstructions. Additionally, any registration errors present in pre-registered inputs could propagate throughout SR reconstructions leading to error accumulation. To address these limitations, in this study, we propose a deformable registration-based super-resolution reconstruction (DIRSR) reconstruction, which handles deformable registration as part of super-resolution. This approach has been demonstrated using 12 synthetic 4-D MRI lung datasets created using single plane (coronal) datasets of six patients and multi-plane (coronal and axial) 4-D lung MRI dataset of one patient. From our evaluation, DIRSR reconstructions are sharper and well aligned compared to reconstructions using SR of pre-registered inputs and rigid-registration SR. MSE, SNR and SSIM evaluations also indicate better reconstruction quality from DIRSR compared to reconstructions from SR of pre-registered inputs (p-value less than 0.0001). In conclusion, we found superior isotropic reconstructions of 4-D MR datasets from DIRSR reconstructions, which could benefit volumetric MR analyses.
多层面超分辨率(SR)已广泛应用于提高磁共振图像的分辨率。然而,这主要限于刚性运动的 MRI 采集。在非刚性运动的情况下,通常在 SR 重建之前使用变形配准方法对体积进行预配准。然后,将预配准的图像用作 SR 重建的输入。由于变形配准涉及输入的平滑处理,因此使用预配准的输入可能会导致 SR 重建中信息的丢失。此外,预配准输入中存在的任何配准误差都可能在 SR 重建中传播,导致误差积累。为了解决这些限制,在这项研究中,我们提出了一种基于变形配准的超分辨率重建(DIRSR)重建方法,该方法将变形配准作为超分辨率的一部分进行处理。该方法已使用六个患者的单平面(冠状)数据集和一个患者的多平面(冠状和轴向)4D 肺部 MRI 数据集创建的 12 个合成 4D MRI 肺部数据集进行了演示。从我们的评估结果来看,与使用预配准输入的 SR 重建和刚性配准 SR 重建相比,DIRSR 重建的图像更清晰、对齐更好。MSE、SNR 和 SSIM 评估也表明,与使用预配准输入的 SR 重建相比,DIRSR 重建的重建质量更好(p 值小于 0.0001)。总之,我们发现 DIRSR 重建可以从 4D MR 数据集获得更好的各向同性重建,这将有利于容积 MR 分析。