Suppr超能文献

基于三维补丁自相似性学习的磁共振图像各向同性重建。

Isotropic Reconstruction of MR Images Using 3D Patch-Based Self-Similarity Learning.

出版信息

IEEE Trans Med Imaging. 2018 Aug;37(8):1932-1942. doi: 10.1109/TMI.2018.2807451. Epub 2018 Feb 19.

Abstract

Isotropic three-dimensional (3D) acquisition is a challenging task in magnetic resonance imaging (MRI). Particularly in cardiac MRI, due to hardware and time limitations, current 3D acquisitions are limited by low-resolution, especially in the through-plane direction, leading to poor image quality in that dimension. To overcome this problem, super-resolution (SR) techniques have been proposed to reconstruct a single isotropic 3D volume from multiple anisotropic acquisitions. Previously, local regularization techniques such as total variation have been applied to limit noise amplification while preserving sharp edges and small features in the images. In this paper, inspired by the recent progress in patch-based reconstruction, we propose a novel isotropic 3D reconstruction scheme that integrates non-local and self-similarity information from 3D patch neighborhoods. By grouping 3D patches with similar structures, we enforce the natural sparsity of MR images, which can be expressed by a low-rank structure, leading to robust image reconstruction with high signal-to-noise ratio efficiency. An Augmented Lagrangian formulation of the problem is proposed to efficiently decompose the optimization into a low-rank volume denoising and a SR reconstruction. Experimental results in simulations, brain imaging and clinical cardiac MRI, demonstrate that the proposed joint SR and self-similarity learning framework outperforms current state-of-the-art methods. The proposed reconstruction of isotropic 3D volumes may be particularly useful for cardiac applications, such as myocardial infarction scar assessment by late gadolinium enhancement MRI.

摘要

各向同性三维(3D)采集是磁共振成像(MRI)中的一项具有挑战性的任务。特别是在心脏 MRI 中,由于硬件和时间的限制,当前的 3D 采集受到低分辨率的限制,特别是在平面内方向,导致该维度的图像质量较差。为了克服这个问题,已经提出了超分辨率(SR)技术,以从多个各向异性采集重建单个各向同性 3D 体积。以前,已经应用了局部正则化技术(如全变差)来限制噪声放大,同时保留图像中的锐边和小特征。在本文中,受基于补丁重建的最新进展的启发,我们提出了一种新的各向同性 3D 重建方案,该方案整合了来自 3D 补丁邻域的非局部和自相似性信息。通过将具有相似结构的 3D 补丁分组,我们强制要求 MR 图像的自然稀疏性可以用低秩结构来表示,从而可以实现具有高信噪比效率的稳健图像重建。提出了问题的增广拉格朗日公式,以有效地将优化分解为低秩体积去噪和 SR 重建。在模拟、脑成像和临床心脏 MRI 中的实验结果表明,所提出的联合 SR 和自相似性学习框架优于当前最先进的方法。所提出的各向同性 3D 体积重建对于心脏应用可能特别有用,例如通过晚期钆增强 MRI 评估心肌梗死瘢痕。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验