Simon A, Rapacioli M, Rouaut G, Trinquier G, Gadéa F X
Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, 31062 Toulouse, France
Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, 31062 Toulouse, France.
Philos Trans A Math Phys Eng Sci. 2017 Apr 28;375(2092). doi: 10.1098/rsta.2016.0195.
We present dynamical studies of the dissociation of polycyclic aromatic hydrocarbon (PAH) radical cations in their ground electronic states with significant internal energy. Molecular dynamics simulations are performed, the electronic structure being described on-the-fly at the self-consistent-charge density functional-based tight binding (SCC-DFTB) level of theory. The SCC-DFTB approach is first benchmarked against DFT results. Extensive simulations are achieved for naphthalene [Formula: see text], pyrene [Formula: see text] and coronene [Formula: see text] at several energies. Such studies enable one to derive significant trends on branching ratios, kinetics, structures and hints on the formation mechanism of the ejected neutral fragments. In particular, dependence of branching ratios on PAH size and energy were retrieved. The losses of H and H (recognized as the ethyne molecule) were identified as major dissociation channels. The H/CH ratio was found to increase with PAH size and to decrease with energy. For [Formula: see text], which is the most interesting PAH from the astrophysical point of view, the loss of H was found as the quasi-only channel for an internal energy of 30 eV. Overall, in line with experimental trends, decreasing the internal energy or increasing the PAH size will favour the hydrogen loss channels with respect to carbonaceous fragments.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
我们展示了具有显著内能的多环芳烃(PAH)自由基阳离子在其基态电子态下解离的动力学研究。进行了分子动力学模拟,电子结构在自洽电荷密度泛函紧束缚(SCC-DFTB)理论水平上实时描述。SCC-DFTB方法首先与DFT结果进行基准测试。在几个能量下对萘[化学式:见原文]、芘[化学式:见原文]和蔻[化学式:见原文]进行了广泛的模拟。此类研究使人们能够得出关于分支比、动力学、结构以及 ejected 中性碎片形成机制的重要趋势。特别是,检索到了分支比对PAH尺寸和能量的依赖性。H和H(被识别为乙炔分子)的损失被确定为主要解离通道。发现H/CH比随PAH尺寸增加而增加,随能量降低而降低。对于[化学式:见原文],从天体物理学角度来看它是最有趣的PAH,发现对于30 eV的内能,H的损失是准唯一通道。总体而言,与实验趋势一致,降低内能或增加PAH尺寸将有利于相对于含碳碎片的氢损失通道。本文是主题为“气相、凝聚相和界面中非平衡和非统计动力学的理论与计算研究”特刊的一部分。