Lab. Chim. & Phys. Quant. LCPQ IRSAMC, Univ. Toulouse [UPS] UPS & CNRS, UMR5626, 118 Route Narbonne, F-31062, Toulouse, France.
Phys Chem Chem Phys. 2018 May 7;20(17):11941-11953. doi: 10.1039/c8cp01175c. Epub 2018 Apr 18.
In dense interstellar environments, Polycyclic Aromatic Hydrocarbons (PAHs) are likely to condense onto or integrate into water ice mantles covering dust grains. Understanding the role of ice in the photo-induced processes involving adsorbed PAHs is therefore a key issue in astrochemistry. This requires (i) the knowledge of PAH-ice interactions, i.e. PAH-ice adsorption energies and local structures at the PAH-ice interface, as well as (ii) the understanding of the fate of electrons in the PAH-ice system upon excitation. Regarding (i), in this work, we determined the lowest energy structures of PAH-ice systems for a variety of PAHs ranging from naphthalene to ovalene on three types of ice - crystalline (Ih and Ic) and amorphous (low density) - using an explicit description of the electrons and a finite-sized system. The electronic structure was determined using the Self Consistent Charge Density Functional based Tight Binding (SCC-DFTB) scheme with modified Mulliken charges in order to ensure a good description of the studied systems. Regarding (ii), the influence of the interaction with ice on the Vertical Ionisation Potentials (VIPs) of the series of PAHs was determined using the constrained SCC-DFTB scheme benchmarked against correlated wavefunction results for PAH-(HO) (n = 1-6, 13) clusters. The results show a deviation equal, at most, to ∼1.4 eV of the VIPs of PAHs adsorbed on ice with respect to the gas phase values. Our results are discussed in the light of experimental data and previous theoretical studies.
在密集的星际环境中,多环芳烃(PAHs)很可能会凝结或整合到覆盖尘埃颗粒的水冰幔中。因此,了解冰在涉及吸附 PAHs 的光诱导过程中的作用是天体化学中的一个关键问题。这需要(i)了解 PAH-ice 相互作用,即 PAH-ice 吸附能和 PAH-ice 界面处的局部结构,以及(ii)了解电子在 PAH-ice 系统中激发后的命运。关于(i),在这项工作中,我们使用显式电子描述和有限大小的系统,确定了从萘到卵烯的各种 PAH 在三种冰——晶态(Ih 和 Ic)和非晶态(低密度)——上的 PAH-ice 体系的最低能量结构。电子结构使用基于自洽电荷密度泛函的紧束缚(SCC-DFTB)方案确定,其中使用修正的 Mulliken 电荷以确保对研究体系的良好描述。关于(ii),使用受约束的 SCC-DFTB 方案确定了与冰相互作用对一系列 PAH 的垂直电离势(VIP)的影响,该方案与 PAH-(HO)(n = 1-6,13)团簇的相关波函数结果进行了基准测试。结果表明,与气相值相比,吸附在冰上的 PAHs 的 VIP 最多偏离约 1.4 eV。我们的结果在实验数据和以前的理论研究的基础上进行了讨论。