Suppr超能文献

寄生虫驱动生态进化反馈的实验证据。

Experimental evidence that parasites drive eco-evolutionary feedbacks.

机构信息

School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom;

Aquatic Ecology Department, Eawag, Swiss Federal Institute of Aquatic Research and Technology, 6047 Kastanienbaum, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3678-3683. doi: 10.1073/pnas.1619147114. Epub 2017 Mar 20.

Abstract

Host resistance to parasites is a rapidly evolving trait that can influence how hosts modify ecosystems. Eco-evolutionary feedbacks may develop if the ecosystem effects of host resistance influence selection on subsequent host generations. In a mesocosm experiment, using a recently diverged (<100 generations) pair of lake and stream three-spined sticklebacks, we tested how experimental exposure to a common fish parasite ( spp.) affects interactions between hosts and their ecosystems in two environmental conditions (low and high nutrients). In both environments, we found that stream sticklebacks were more resistant to and had different gene expression profiles than lake sticklebacks. This differential infection led to contrasting effects of sticklebacks on a broad range of ecosystem properties, including zooplankton community structure and nutrient cycling. These ecosystem modifications affected the survival, body condition, and gene expression profiles of a subsequent fish generation. In particular, lake juvenile fish suffered increased mortality in ecosystems previously modified by lake adults, whereas stream fish showed decreased body condition in stream fish-modified ecosystems. Parasites reinforced selection against lake juveniles in lake fish-modified ecosystems, but only under oligotrophic conditions. Overall, our results highlight the overlapping timescales and the interplay of host-parasite and host-ecosystem interactions. We provide experimental evidence that parasites influence host-mediated effects on ecosystems and, thereby, change the likelihood and strength of eco-evolutionary feedbacks.

摘要

宿主对寄生虫的抵抗力是一种快速进化的特征,它可以影响宿主对生态系统的改变方式。如果宿主对寄生虫的抵抗力的生态系统影响影响到对后续宿主代的选择,那么生态进化反馈就可能发展。在一个中观实验中,我们使用一对最近分化(<100 代)的湖泊和溪流三种棘鱼,测试了在两种环境条件(低营养和高营养)下,宿主对一种常见鱼类寄生虫( spp.)的实验暴露如何影响宿主与其生态系统之间的相互作用。在这两种环境中,我们发现溪流棘鱼对 有更高的抵抗力,并且与湖泊棘鱼相比,它们的基因表达谱也不同。这种差异感染导致棘鱼对一系列广泛的生态系统特性产生了相反的影响,包括浮游动物群落结构和营养循环。这些生态系统的改变影响了后续鱼类一代的生存、身体状况和基因表达谱。特别是,在先前被湖泊成鱼改变的生态系统中,湖泊幼鱼的死亡率增加,而在溪流鱼改变的生态系统中,溪流鱼的身体状况下降。寄生虫在湖泊鱼改变的生态系统中加强了对湖泊幼鱼的选择,但仅在贫营养条件下如此。总体而言,我们的结果强调了宿主-寄生虫和宿主-生态系统相互作用的重叠时间尺度和相互作用。我们提供了实验证据表明,寄生虫影响宿主对生态系统的介导效应,从而改变了生态进化反馈的可能性和强度。

相似文献

1
Experimental evidence that parasites drive eco-evolutionary feedbacks.
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3678-3683. doi: 10.1073/pnas.1619147114. Epub 2017 Mar 20.
2
Experimental Evidence of an Eco-evolutionary Feedback during Adaptive Divergence.
Curr Biol. 2016 Feb 22;26(4):483-9. doi: 10.1016/j.cub.2015.11.070. Epub 2016 Jan 21.
3
The association of feeding behaviour with the resistance and tolerance to parasites in recently diverged sticklebacks.
J Evol Biol. 2016 Nov;29(11):2157-2167. doi: 10.1111/jeb.12934. Epub 2016 Jul 23.
8
An experimental approach to the immuno-modulatory basis of host-parasite local adaptation in tapeworm-infected sticklebacks.
Exp Parasitol. 2017 Sep;180:119-132. doi: 10.1016/j.exppara.2017.03.004. Epub 2017 Mar 18.
9
In vitro leukocyte response of three-spined sticklebacks (Gasterosteus aculeatus) to helminth parasite antigens.
Fish Shellfish Immunol. 2014 Jan;36(1):130-40. doi: 10.1016/j.fsi.2013.10.019. Epub 2013 Oct 29.
10
Effects of environmental variation on host-parasite interaction in three-spined sticklebacks (Gasterosteus aculeatus).
Zoology (Jena). 2016 Aug;119(4):375-83. doi: 10.1016/j.zool.2016.05.008. Epub 2016 May 26.

引用本文的文献

1
Parasite-mediated predation determines infection in a complex predator-prey-parasite system.
Proc Biol Sci. 2024 Apr 30;291(2021):20232468. doi: 10.1098/rspb.2023.2468. Epub 2024 Apr 24.
2
Host-parasite interactions in perpetual darkness: Macroparasite diversity in the cavefish .
Zool Res. 2023 Jul 18;44(4):782-792. doi: 10.24272/j.issn.2095-8137.2022.376.
3
Adaptive host responses to infection can resemble parasitic manipulation.
Ecol Evol. 2023 Jul 15;13(7):e10318. doi: 10.1002/ece3.10318. eCollection 2023 Jul.
4
The timings of host diapause and epidemic progression mediate host genetic diversity and future epidemic size in parasite populations.
Proc Biol Sci. 2023 Mar 29;290(1995):20222139. doi: 10.1098/rspb.2022.2139. Epub 2023 Mar 22.
5
Ascaridoid parasites in European sardine throughout the annual cycle: Variability in parasitic load according to host stock features.
Int J Parasitol Parasites Wildl. 2022 Dec 6;20:1-11. doi: 10.1016/j.ijppaw.2022.12.001. eCollection 2023 Apr.
6
A Behavioral Syndrome Linking Boldness and Flexibility Facilitates Invasion Success in Sticklebacks.
Am Nat. 2022 Dec;200(6):846-856. doi: 10.1086/721765. Epub 2022 Oct 20.
7
Context-dependent parasite infection affects trophic niche in populations of sympatric stickleback species.
Parasitology. 2022 Aug;149(9):1164-1172. doi: 10.1017/S0031182022000531. Epub 2022 May 16.
8
Basal Parasitic Fungi in Marine Food Webs-A Mystery Yet to Unravel.
J Fungi (Basel). 2022 Jan 26;8(2):114. doi: 10.3390/jof8020114.
9
Cross-continental experimental infections reveal distinct defence mechanisms in populations of the three-spined stickleback .
Proc Biol Sci. 2021 Sep 29;288(1959):20211758. doi: 10.1098/rspb.2021.1758. Epub 2021 Sep 22.

本文引用的文献

1
The association of feeding behaviour with the resistance and tolerance to parasites in recently diverged sticklebacks.
J Evol Biol. 2016 Nov;29(11):2157-2167. doi: 10.1111/jeb.12934. Epub 2016 Jul 23.
2
Understanding the ecology and evolution of host-parasite interactions across scales.
Evol Appl. 2015 Aug 20;9(1):37-52. doi: 10.1111/eva.12294. eCollection 2016 Jan.
3
Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.
PLoS Genet. 2016 Feb 29;12(2):e1005887. doi: 10.1371/journal.pgen.1005887. eCollection 2016 Feb.
4
Eco-evolutionary Biology: Feeding and Feedback Loops.
Curr Biol. 2016 Feb 22;26(4):R161-4. doi: 10.1016/j.cub.2016.01.013.
5
Eco-evolutionary dynamics in a coevolving host-virus system.
Ecol Lett. 2016 Apr;19(4):450-9. doi: 10.1111/ele.12580. Epub 2016 Feb 21.
6
Ecological Impacts of Reverse Speciation in Threespine Stickleback.
Curr Biol. 2016 Feb 22;26(4):490-5. doi: 10.1016/j.cub.2016.01.004. Epub 2016 Jan 21.
7
Experimental Evidence of an Eco-evolutionary Feedback during Adaptive Divergence.
Curr Biol. 2016 Feb 22;26(4):483-9. doi: 10.1016/j.cub.2015.11.070. Epub 2016 Jan 21.
9
Hard and Soft Selection Revisited: How Evolution by Natural Selection Works in the Real World.
J Hered. 2016 Jan;107(1):3-14. doi: 10.1093/jhered/esv076. Epub 2015 Sep 30.
10
Linking anthropogenic resources to wildlife-pathogen dynamics: a review and meta-analysis.
Ecol Lett. 2015 May;18(5):483-95. doi: 10.1111/ele.12428. Epub 2015 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验