Department of Chemistry, Princeton University, Princeton, NJ 08544.
Department of Chemistry, Princeton University, Princeton, NJ 08544;
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):E2920-E2928. doi: 10.1073/pnas.1619529114. Epub 2017 Mar 20.
Bacteria produce a diverse array of secondary metabolites that have been invaluable in the clinic and in research. These metabolites are synthesized by dedicated biosynthetic gene clusters (BGCs), which assemble architecturally complex molecules from simple building blocks. The majority of BGCs in a given bacterium are not expressed under normal laboratory growth conditions, and our understanding of how they are silenced is in its infancy. Here, we have addressed this question in the Gram-negative model bacterium E264 using genetic, transcriptomic, metabolomic, and chemical approaches. We report that a previously unknown, quorum-sensing-controlled LysR-type transcriptional regulator, which we name ScmR (for secondary metabolite regulator), serves as a global gatekeeper of secondary metabolism and a repressor of numerous BGCs. Transcriptionally, we find that 13 of the 20 BGCs in are significantly (threefold or more) up- or down-regulated in a deletion mutant ( Metabolically, the strain displays a hyperactive phenotype relative to wild type and overproduces a number of compound families by 18- to 210-fold, including the silent virulence factor malleilactone. Accordingly, the mutant is hypervirulent both in vitro and in a model in vivo. Aside from secondary metabolism, ScmR also represses biofilm formation and transcriptionally activates ATP synthesis and stress response. Collectively, our data suggest that ScmR is a pleiotropic regulator of secondary metabolism, virulence, biofilm formation, and other stationary phase processes. A model for how the interplay of ScmR with pathway-specific transcriptional regulators coordinately silences virulence factor production is proposed.
细菌产生了多种多样的次生代谢产物,这些产物在临床上和研究中都非常有价值。这些代谢产物是由专门的生物合成基因簇(BGCs)合成的,BGCs 从简单的构建块组装出结构复杂的分子。给定细菌中的大多数 BGC 在正常实验室生长条件下都不表达,我们对它们如何沉默的理解还处于起步阶段。在这里,我们使用遗传、转录组学、代谢组学和化学方法在革兰氏阴性模式细菌 E264 中解决了这个问题。我们报告说,一种以前未知的、群体感应控制的 LysR 型转录调节因子,我们将其命名为 ScmR(secondary metabolite regulator,次生代谢物调节因子),作为次生代谢物的全局守门人,并抑制许多 BGC。转录组学上,我们发现 20 个 BGC 中有 13 个在 缺失突变体中显著(三倍或更多)上调或下调。代谢上,与野生型相比, 菌株表现出超活性表型,并且通过 18 到 210 倍过度产生许多化合物家族,包括沉默的毒力因子 malleilactone。因此, 突变体在体外和体内 模型中都具有超毒性。除了次生代谢物,ScmR 还抑制生物膜形成,并转录激活 ATP 合成和应激反应。总的来说,我们的数据表明,ScmR 是次生代谢物、毒力、生物膜形成和其他静止期过程的多效调节因子。提出了一个模型,说明 ScmR 如何与途径特异性转录调节因子相互作用,协调沉默毒力因子的产生。