Suppr超能文献

关于单侧统计检验在生物医学研究中的应用。

On the use of one-sided statistical tests in biomedical research.

作者信息

Murphy Ricardo

机构信息

Department of Molecular Medicine, University of Oslo, Oslo, Norway.

出版信息

Clin Exp Pharmacol Physiol. 2018 Jan;45(1):109-114. doi: 10.1111/1440-1681.12754. Epub 2017 Sep 20.

Abstract

There is a tendency to automatically use two-sided tests to assess the statistical significance of experimental results. Yet if a theory predicts the direction of an experimental outcome, or if for some practical (eg clinical) reason an outcome in that direction is the only one of interest, then it makes sense to use a one-sided test. The use of a two-sided test in these situations will lead to too many false negatives. Consequently treatment effects that corroborate a theory or that are of practical importance may be missed. This problem becomes particularly acute in the case of borderline results. Following a nonsignificant one-sided test, the possibility of an effect in the direction opposite to that predicted or required can be assessed in an exploratory fashion by computing the odds in favour of such an effect. Anyone is then at liberty to pursue this possibility as they see fit. The question of whether to use a one-sided or two-sided statistical test should always be decided on logical grounds not statistical ones, and suspicions regarding the motives of the investigator(s) should be disregarded. On the other hand, this choice can be avoided altogether by assuming that a treatment always has some effect (however small) and then computing the strength of the evidence in favour of the observed or predicted/required effect (ie 1-P, where P is the one-sided significance level of the test). With this approach one-sided and two-sided tests yield identical results, and so there is effectively only one type of test.

摘要

人们往往倾向于自动使用双侧检验来评估实验结果的统计学显著性。然而,如果一个理论预测了实验结果的方向,或者由于某些实际(如临床)原因,该方向的结果是唯一感兴趣的结果,那么使用单侧检验是合理的。在这些情况下使用双侧检验会导致过多的假阴性。因此,可能会错过证实理论或具有实际重要性的治疗效果。在临界结果的情况下,这个问题变得尤为尖锐。在单侧检验无显著性结果之后,可以通过计算支持这种效应的概率,以探索性的方式评估与预测或所需方向相反的效应的可能性。然后任何人都可以根据自己的判断自由地探讨这种可能性。是否使用单侧或双侧统计检验的问题应该始终基于逻辑依据而非统计依据来决定,并且应该忽略对研究者动机的怀疑。另一方面,通过假设一种治疗总是有某种效果(无论多么小),然后计算支持观察到的或预测的/所需的效果的证据强度(即1 - P,其中P是检验的单侧显著性水平),可以完全避免这种选择。采用这种方法,单侧检验和双侧检验会产生相同的结果,因此实际上只有一种类型的检验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验