Suppr超能文献

利用图形处理器(GPU)对水辐射分解化学阶段进行加速蒙特卡罗模拟。

Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU.

作者信息

Tian Zhen, Jiang Steve B, Jia Xun

机构信息

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.

出版信息

Phys Med Biol. 2017 Apr 21;62(8):3081-3096. doi: 10.1088/1361-6560/aa6246. Epub 2017 Mar 21.

Abstract

The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2.

摘要

水辐射分解的精确模拟是理解放射生物学机制以及定量检验一些关于放射生物学效应假设的重要一步。然而,水辐射分解的模拟耗时极长,使用传统的CPU处理器完成模拟需要数小时甚至数天。这种时间限制阻碍了许多研究中的细胞水平模拟。我们最近开始努力开发gMicroMC,这是一个基于GPU的用于水辐射分解的快速微观蒙特卡罗模拟软件包。该项目的第一步聚焦于加速化学阶段的模拟,这是整个水辐射分解过程中最耗时的阶段。设计了一种对GPU友好的并行化策略来解决由辐射分解分子之间相互竞争的化学反应导致的高度相关的多体模拟问题。测试了两种情况,分别使用750 keV电子和5 MeV质子入射到纯水中。化学阶段所有辐射分解产物的时间依赖性产率用于评估模拟的准确性。在这两种情况下,我们的模拟与Geant4-DNA模拟之间的相对差异平均分别为5.3%和4.4%。我们的软件包在英伟达Titan black GPU卡上运行,成功在599.2秒和489.0秒内完成了这两种情况的化学阶段模拟。与在英特尔i7-5500U CPU处理器上运行、使用单个CPU核心对这两种情况分别需要28.6小时和26.8小时的Geant4-DNA相比,我们的软件包实现了171.1至197.2的加速因子。

相似文献

1
Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU.
Phys Med Biol. 2017 Apr 21;62(8):3081-3096. doi: 10.1088/1361-6560/aa6246. Epub 2017 Mar 21.
3
5
Validation and investigation of reactive species yields of Geant4-DNA chemistry models.
Med Phys. 2019 Feb;46(2):983-998. doi: 10.1002/mp.13332. Epub 2018 Dec 26.
7
Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio.
Phys Med Biol. 2018 May 17;63(10):105014. doi: 10.1088/1361-6560/aac04c.
8
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
Phys Med Biol. 2015 Oct 7;60(19):7419-35. doi: 10.1088/0031-9155/60/19/7419. Epub 2015 Sep 9.
10
Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU.
Comput Methods Programs Biomed. 2014;113(1):116-25. doi: 10.1016/j.cmpb.2013.09.009. Epub 2013 Sep 20.

本文引用的文献

3
GPU-based high-performance computing for radiation therapy.
Phys Med Biol. 2014 Feb 21;59(4):R151-82. doi: 10.1088/0031-9155/59/4/R151. Epub 2014 Feb 3.
4
Accelerated event-by-event Monte Carlo microdosimetric calculations of electrons and protons tracks on a multi-core CPU and a CUDA-enabled GPU.
Comput Methods Programs Biomed. 2014;113(1):116-25. doi: 10.1016/j.cmpb.2013.09.009. Epub 2013 Sep 20.
5
GPU-based fast Monte Carlo dose calculation for proton therapy.
Phys Med Biol. 2012 Dec 7;57(23):7783-97. doi: 10.1088/0031-9155/57/23/7783. Epub 2012 Nov 6.
6
Smoldyn on graphics processing units: massively parallel Brownian dynamics simulations.
IEEE/ACM Trans Comput Biol Bioinform. 2012 May-Jun;9(3):655-67. doi: 10.1109/TCBB.2011.106.
9
GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform.
Med Phys. 2011 Feb;38(2):754-64. doi: 10.1118/1.3539725.
10
Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC.
Mutat Res. 2011 Jun 3;711(1-2):28-40. doi: 10.1016/j.mrfmmm.2011.01.003. Epub 2011 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验