Ali Yasmine, Auzel Lucas, Monini Caterina, Kriachok Kateryna, Létang Jean Michel, Testa Etienne, Maigne Lydia, Beuve Michael
Institut de Physique des 2 Infinis de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, 4 rue Enrico Fermi, Villeurbanne, 69622, France.
Laboratoire de Physique de Clermont, Université Clermont Auvergne, CNRS/IN2P3, 4 Avenue Blaise Pascal, Aubière cedex, 63178, France.
Med Phys. 2022 May;49(5):3457-3469. doi: 10.1002/mp.15609. Epub 2022 Apr 1.
In hadrontherapy, biophysical models can be used to predict the biological effect received by cancerous tissues and organs at risk. The input data of these models generally consist of information on nano/micro dosimetric quantities and, concerning some models, reactive species produced in water radiolysis. In order to fully account for the radiation stochastic effects, these input data have to be provided by Monte Carlo track structure (MCTS) codes allowing to estimate physical, physico-chemical, and chemical effects of radiation at the molecular scale. The objective of this study is to benchmark two MCTS codes, Geant4-DNA and LPCHEM, that are useful codes for estimating the biological effects of ions during radiation therapy treatments.
In this study we considered the simulation of specific energy spectra for monoenergetic proton beams (10 MeV) as well as radiolysis species production for both electron (1 MeV) and proton (10 MeV) beams with Geant4-DNA and LPCHEM codes. Options 2, 4, and 6 of the Geant4-DNA physics lists have been benchmarked against LPCHEM. We compared probability distributions of energy transfer points in cylindrical nanometric targets (10 nm) positioned in a liquid water box. Then, radiochemical species (· OH, , , H , and yields simulated between 10 and 10 s after irradiation are compared.
Overall, the specific energy spectra and the chemical yields obtained by the two codes are in good agreement considering the uncertainties on experimental data used to calibrate the parameters of the MCTS codes. For 10 MeV proton beams, ionization and excitation processes are the major contributors to the specific energy deposition (larger than 90%) while attachment, solvation, and vibration processes are minor contributors. LPCHEM simulates tracks with slightly more concentrated energy depositions than Geant4-DNA which translates into slightly faster recombination than Geant4-DNA. Relative deviations (C ) with respect to the average of evolution rates of the radical yields between 10 and 10 s remain below 10%. When comparing execution times between the codes, we showed that LPCHEM is faster than Geant4-DNA by a factor of about four for 1000 primary particles in all simulation stages (physical, physico-chemical, and chemical). In multi-thread mode (four threads), Geant4-DNA computing times are reduced but remain slower than LPCHEM by ∼20% up to ∼50%.
For the first time, the entire physical, physico-chemical, and chemical models of two track structure Monte Carlo codes have been benchmarked along with an extensive analysis on the effects on the water radiolysis simulation. This study opens up new perspectives in using specific energy distributions and radiolytic species yields from monoenergetic ions in biophysical models integrated to Monte Carlo software.
在强子治疗中,生物物理模型可用于预测癌组织和危及器官所接受的生物效应。这些模型的输入数据通常包括纳米/微剂量学量的信息,对于某些模型,还包括水辐射分解产生的活性物种的信息。为了充分考虑辐射的随机效应,这些输入数据必须由蒙特卡罗径迹结构(MCTS)代码提供,该代码能够在分子尺度上估计辐射的物理、物理化学和化学效应。本研究的目的是对两个MCTS代码Geant4-DNA和LPCHEM进行基准测试,这两个代码对于估计放射治疗中离子的生物效应很有用。
在本研究中,我们使用Geant4-DNA和LPCHEM代码,对单能质子束(10 MeV)的比能谱以及电子(1 MeV)和质子(10 MeV)束的辐射分解产物生成进行了模拟。Geant4-DNA物理列表的选项2、4和6已与LPCHEM进行了基准测试。我们比较了位于液态水箱中的圆柱形纳米靶(10 nm)中能量转移点的概率分布。然后,比较了辐照后10到10 s之间模拟的放射化学物种(·OH、 、 、H和 产额。
总体而言,考虑到用于校准MCTS代码参数的实验数据的不确定性,两个代码获得的比能谱和化学产额吻合良好。对于10 MeV质子束,电离和激发过程是比能沉积的主要贡献者(大于90%),而附着、溶剂化和振动过程是次要贡献者。LPCHEM模拟的径迹能量沉积比Geant4-DNA稍集中,这意味着其复合速度比Geant4-DNA稍快。10到10 s之间自由基产额演化速率平均值的相对偏差(C)保持在10%以下。在比较代码之间的执行时间时,我们发现对于1000个初级粒子,在所有模拟阶段(物理、物理化学和化学),LPCHEM比Geant4-DNA快约四倍。在多线程模式(四个线程)下,Geant4-DNA的计算时间减少,但仍比LPCHEM慢约20%至约50%。
首次对两个径迹结构蒙特卡罗代码的整个物理、物理化学和化学模型进行了基准测试,并对水辐射分解模拟的影响进行了广泛分析。这项研究为在集成到蒙特卡罗软件的生物物理模型中使用单能离子的比能分布和辐射分解产物产额开辟了新的前景。