KEK, 1-1, Oho, Tsukuba, Ibaraki, 305-0801, Japan.
University of Bordeaux, CENBG, UMR 5797, Gradignan, F-33170, France.
Med Phys. 2019 Mar;46(3):1483-1500. doi: 10.1002/mp.13370. Epub 2019 Jan 22.
Track structure simulation codes can accurately reproduce the stochastic nature of particle-matter interactions in order to evaluate quantitatively radiation damage in biological cells such as DNA strand breaks and base damage. Such simulations handle large numbers of secondary charged particles and molecular species created in the irradiated medium. Every particle and molecular species are tracked step-by-step using a Monte Carlo method to calculate energy loss patterns and spatial distributions of molecular species inside a cell nucleus with high spatial accuracy. The Geant4-DNA extension of the Geant4 general-purpose Monte Carlo simulation toolkit allows for such track structure simulations and can be run on CPUs. However, long execution times have been observed for the simulation of DNA damage in cells. We present in this work an improvement of the computing performance of such simulations using ultraparallel processing on a graphical processing unit (GPU).
A new Monte Carlo simulator named MPEXS-DNA, allowing high computing performance by using a GPU, has been developed for track structure and radiolysis simulations at the subcellular scale. MPEXS-DNA physics and chemical processes are based on Geant4-DNA processes available in Geant4 version 10.02 p03. We have reimplemented the Geant4-DNA process codes of the physics stage (electromagnetic processes of charged particles) and the chemical stage (diffusion and chemical reactions for molecular species) for microdosimetry simulation by using the CUDA language. MPEXS-DNA can calculate a distribution of energy loss in the irradiated medium caused by charged particles and also simulate production, diffusion, and chemical interactions of molecular species from water radiolysis to quantitatively assess initial damage to DNA. The validation of MPEXS-DNA physics and chemical simulations was performed by comparing various types of distributions, namely the radial dose distributions for the physics stage, and the G-value profiles for each chemical product and their linear energy transfer dependency for the chemical stage, to existing experimental data and simulation results obtained by other simulation codes, including PARTRAC.
For physics validation, radial dose distributions calculated by MPEXS-DNA are consistent with experimental data and numerical simulations. For chemistry validation, MPEXS-DNA can also reproduce G-value profiles for each molecular species with the same tendency as existing experimental data. MPEXS-DNA also agrees with simulations by PARTRAC reasonably well. However, we have confirmed that there are slight discrepancies in G-value profiles calculated by MPEXS-DNA for molecular species such as H and H O when compared to experimental data and PARTRAC simulations. The differences in G-value profiles between MPEXS-DNA and PARTRAC are caused by the different chemical reactions considered. MPEXS-DNA can drastically boost the computing performance of track structure and radiolysis simulations. By using NVIDIA's GPU devices adopting the Volta architecture, MPEXS-DNA has achieved speedup factors up to 2900 against Geant4-DNA simulations with a single CPU core.
The MPEXS-DNA Monte Carlo simulation achieves similar accuracy to Monte Carlo simulations performed using other codes such as Geant4-DNA and PARTRAC, and its predictions are consistent with experimental data. Notably, MPEXS-DNA allows calculations that are, at maximum, 2900 times faster than conventional simulations using a CPU.
追踪结构模拟代码可以准确地再现粒子与物质相互作用的随机性,从而定量评估生物细胞中的辐射损伤,如 DNA 链断裂和碱基损伤。此类模拟处理大量在辐照介质中产生的次级带电粒子和分子种类。使用蒙特卡罗方法逐步追踪每个粒子和分子种类,以高精度空间分辨率计算分子种类在细胞核内的能量损失模式和空间分布。通用蒙特卡罗模拟工具包 Geant4 的 Geant4-DNA 扩展允许进行此类追踪结构模拟,并可在 CPU 上运行。然而,在模拟细胞中的 DNA 损伤时,观察到执行时间很长。我们在这项工作中提出了一种使用图形处理单元 (GPU) 上的超并行处理来改进此类模拟的计算性能的方法。
我们开发了一种名为 MPEXS-DNA 的新蒙特卡罗模拟器,该模拟器通过使用 GPU 实现了高计算性能,可用于亚细胞尺度的追踪结构和放射分解模拟。MPEXS-DNA 的物理和化学过程基于 Geant4 版本 10.02 p03 中可用的 Geant4-DNA 过程。我们使用 CUDA 语言重新实现了用于微剂量学模拟的 Geant4-DNA 过程代码的物理阶段(带电粒子的电磁过程)和化学阶段(分子种类的扩散和化学反应)。MPEXS-DNA 可以计算带电粒子在辐照介质中引起的能量损失分布,还可以模拟水放射分解产生、扩散和化学相互作用的分子种类,以定量评估 DNA 的初始损伤。通过将 MPEXS-DNA 的物理和化学模拟的各种类型的分布(即物理阶段的径向剂量分布和化学阶段的每个化学产物的 G 值分布及其线性能量转移依赖性)与现有的实验数据和其他模拟代码(包括 PARTRAC)获得的模拟结果进行比较,验证了 MPEXS-DNA 的物理和化学模拟。
对于物理验证,MPEXS-DNA 计算的径向剂量分布与实验数据和数值模拟一致。对于化学验证,MPEXS-DNA 也可以再现每个分子种类的 G 值分布,其趋势与现有的实验数据一致。MPEXS-DNA 与 PARTRAC 的模拟结果也相当吻合。然而,我们已经证实,与实验数据和 PARTRAC 模拟相比,MPEXS-DNA 计算的 H 和 H2O 等分子种类的 G 值分布存在细微差异。MPEXS-DNA 和 PARTRAC 之间的 G 值分布差异是由考虑的不同化学反应引起的。MPEXS-DNA 可以极大地提高追踪结构和放射分解模拟的计算性能。通过使用 NVIDIA 的采用 Volta 架构的 GPU 设备,MPEXS-DNA 实现了高达 2900 倍的加速因子,相对于单个 CPU 核心的 Geant4-DNA 模拟。
MPEXS-DNA 蒙特卡罗模拟达到了与使用其他代码(如 Geant4-DNA 和 PARTRAC)进行的蒙特卡罗模拟类似的精度,并且其预测与实验数据一致。值得注意的是,MPEXS-DNA 允许的计算速度比使用 CPU 进行的常规模拟快 2900 倍。