Suppr超能文献

溶血磷脂及其受体在组织氧化和炎症损伤中作为条件性损伤相关分子模式和损伤相关分子模式受体发挥作用。

Lysophospholipids and Their Receptors Serve as Conditional DAMPs and DAMP Receptors in Tissue Oxidative and Inflammatory Injury.

作者信息

Shao Ying, Nanayakkara Gayani, Cheng Jiali, Cueto Ramon, Yang William Y, Park Joon-Young, Wang Hong, Yang Xiaofeng

机构信息

Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania.

Department of Kinesiology, College of Public Health, Temple University, Philadelphia, Pennsylvania.

出版信息

Antioxid Redox Signal. 2018 Apr 1;28(10):973-986. doi: 10.1089/ars.2017.7069. Epub 2017 Apr 26.

Abstract

We proposed lysophospholipids (LPLs) and LPL-G-protein-coupled receptors (GPCRs) as conditional danger-associated molecular patterns (DAMPs) and conditional DAMP receptors as a paradigm shift to the widely accepted classical DAMP and DAMP receptor model. The aberrant levels of LPLs and GPCRs activate pro-inflammatory signal transduction pathways, trigger innate immune response, and lead to tissue oxidative and inflammatory injury. Classical DAMP model specifies only the endogenous metabolites that are released from damaged/dying cells as DAMPs, but fails to identify elevated endogenous metabolites secreted from viable/live cells during pathologies as DAMPs. The current classification of DAMPs also fails to clarify the following concerns: (i) Are molecules, which bind to pattern recognition receptors (PRRs), the only DAMPs contributing to inflammation and tissue injury? (ii) Are all DAMPs acting only classical PRRs during cellular stress? To answer these questions, we reviewed the molecular characteristics and signaling mechanisms of LPLs, a group of endogenous metabolites and their specific receptors and analyzed the significant progress achieved in characterizing oxidative stress mechanisms of LPL mediated tissue injury. Further LPLs and LPL-GPCRs may serve as potential therapeutic targets for the treatment of pathologies induced by sterile inflammation. 28, 973-986.

摘要

我们提出溶血磷脂(LPLs)和LPL - G蛋白偶联受体(GPCRs)作为条件性危险相关分子模式(DAMPs),以及条件性DAMP受体,作为对广泛接受的经典DAMP和DAMP受体模型的一种范式转变。LPLs和GPCRs的异常水平激活促炎信号转导通路,触发先天免疫反应,并导致组织氧化和炎症损伤。经典DAMP模型仅将从受损/濒死细胞释放的内源性代谢产物指定为DAMPs,但未能将病理过程中从存活细胞分泌的升高的内源性代谢产物识别为DAMPs。当前对DAMPs的分类也未能阐明以下问题:(i)与模式识别受体(PRRs)结合的分子是否是导致炎症和组织损伤的唯一DAMPs?(ii)在细胞应激期间,所有DAMPs是否仅作用于经典PRRs?为了回答这些问题,我们回顾了LPLs(一组内源性代谢产物)及其特异性受体的分子特征和信号传导机制,并分析了在表征LPL介导的组织损伤的氧化应激机制方面取得的重大进展。此外,LPLs和LPL - GPCRs可能作为治疗无菌性炎症诱导的病理疾病的潜在治疗靶点。28, 973 - 986。

相似文献

1
Lysophospholipids and Their Receptors Serve as Conditional DAMPs and DAMP Receptors in Tissue Oxidative and Inflammatory Injury.
Antioxid Redox Signal. 2018 Apr 1;28(10):973-986. doi: 10.1089/ars.2017.7069. Epub 2017 Apr 26.
3
Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity.
Antioxid Redox Signal. 2022 Mar;36(7-9):441-461. doi: 10.1089/ars.2021.0073.
4
DAMPs and DAMP-sensing receptors in inflammation and diseases.
Immunity. 2024 Apr 9;57(4):752-771. doi: 10.1016/j.immuni.2024.03.002.
5
Heme as a danger molecule in pathogen recognition.
Free Radic Biol Med. 2015 Dec;89:651-61. doi: 10.1016/j.freeradbiomed.2015.08.020. Epub 2015 Oct 9.
6
DAMPs in immunosenescence and cancer.
Semin Cancer Biol. 2024 Nov;106-107:123-142. doi: 10.1016/j.semcancer.2024.09.005. Epub 2024 Sep 29.
7
Extracellular Matrix-Derived Damage-Associated Molecular Patterns (DAMP): Implications in Systemic Sclerosis and Fibrosis.
J Invest Dermatol. 2023 Oct;143(10):1877-1885. doi: 10.1016/j.jid.2023.04.030. Epub 2023 Jul 14.
9
The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer?
Immunol Cell Biol. 2013 Nov-Dec;91(10):601-10. doi: 10.1038/icb.2013.58. Epub 2013 Oct 8.

引用本文的文献

2
Perspective: Pathological transdifferentiation-a novel therapeutic target for cardiovascular diseases and chronic inflammation.
Front Cardiovasc Med. 2024 Nov 26;11:1500775. doi: 10.3389/fcvm.2024.1500775. eCollection 2024.
3
Cell non-autonomous signaling through the conserved C. elegans glycoprotein hormone receptor FSHR-1 regulates cholinergic neurotransmission.
PLoS Genet. 2024 Nov 19;20(11):e1011461. doi: 10.1371/journal.pgen.1011461. eCollection 2024 Nov.
4
Exploring Lysophosphatidylcholine as a Biomarker in Ischemic Stroke: The Plasma-Brain Disjunction.
Int J Mol Sci. 2024 Oct 3;25(19):10649. doi: 10.3390/ijms251910649.
9
pharmacological characterization of standard and new lysophosphatidic acid receptor antagonists using dynamic mass redistribution assay.
Front Pharmacol. 2023 Nov 14;14:1267414. doi: 10.3389/fphar.2023.1267414. eCollection 2023.
10
Editorial: Debates in cardiovascular pharmacology and drug discovery: 2022.
Front Cardiovasc Med. 2023 Oct 18;10:1304680. doi: 10.3389/fcvm.2023.1304680. eCollection 2023.

本文引用的文献

4
The effect of lysophosphatidic acid on Toll-like receptor 4 expression and the nuclear factor-κB signaling pathway in THP-1 cells.
Mol Cell Biochem. 2016 Nov;422(1-2):41-49. doi: 10.1007/s11010-016-2804-0. Epub 2016 Sep 13.
5
Hyperoxia-induced p47phox activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P1&2 signaling axis in lung endothelium.
Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L337-51. doi: 10.1152/ajplung.00447.2015. Epub 2016 Jun 24.
8
Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation.
Arterioscler Thromb Vasc Biol. 2016 Jun;36(6):1090-100. doi: 10.1161/ATVBAHA.115.306964. Epub 2016 Apr 28.
9
Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells.
Circ Res. 2016 May 13;118(10):1525-39. doi: 10.1161/CIRCRESAHA.116.308501. Epub 2016 Mar 22.
10
Lysophospholipids and their G protein-coupled receptors in atherosclerosis.
Front Biosci (Landmark Ed). 2016 Jan 1;21(1):70-88. doi: 10.2741/4377.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验