Suppr超能文献

用于骨组织工程应用的胺基功能化纳米羟基磷灰石/壳聚糖生物纳米复合材料的制备与表征。

Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications.

机构信息

Department of Medical Biology, Faculty of Medicine, Fatih University, 34500, Buyukcekmece, Istanbul, Turkey.

Department of Chemistry, Faculty of Arts and Sciences, Fatih University, 34500, Buyukcekmece, Istanbul, Turkey.

出版信息

Carbohydr Polym. 2017 May 15;164:200-213. doi: 10.1016/j.carbpol.2017.01.100. Epub 2017 Feb 1.

Abstract

In this study, three different types of scaffolds including a uniquely modified composite scaffold - namely chitosan (CTS), nano-hydroxyapatite/chitosan composite (CTS+nHAP), and amine group (NH) modified nano-hydroxyapatite/chitosan composite (CTS+nHAP-NH) scaffolds - were synthesized for bone tissue engineering (BTE) purposes. As results of the study, it was found that all scaffold types were biodegradable with CTS and CTS+nHAP scaffolds losing up to 15% of their initial weight, while the CTS+nHAP-NH scaffold showing 10% of weight loss after six weeks of lysozyme treatment. In addition, all three types of scaffolds were shown to be biocompatible, and amongst them CTS+nHAP-NH scaffolds supported the most cell proliferation in WST-1 assay and expressed the least and acceptable level of cytotoxicity in lactate dehydrogenase (LDH) test for human bone mesenchymal stem cells (hBM-MSCs). Finally, during osteoinductivity assessment, CTS+nHAP-NH nearly tripled initial alkaline phosphatase (ALP) activity when whereas both CTS and CTS+nHAP scaffolds only doubled. These results indicate that all synthesized scaffold types under investigation have certain potential to be used in bone tissue engineering approaches with CTS+nHAP-NH scaffold being the most promising and applicable one. In the future, we plan to intensify our studies on osteogenic differentiation on our scaffolds on a detailed molecular level and to include in vivo studies for pre-clinical purposes.

摘要

在这项研究中,合成了三种不同类型的支架,包括一种独特改性的复合材料支架——壳聚糖(CTS)、纳米羟基磷灰石/壳聚糖复合材料(CTS+nHAP)和氨基(NH)改性纳米羟基磷灰石/壳聚糖复合材料(CTS+nHAP-NH)支架,用于骨组织工程(BTE)。研究结果表明,所有支架类型均具有生物降解性,CTS 和 CTS+nHAP 支架的初始重量损失高达 15%,而 CTS+nHAP-NH 支架在溶菌酶处理 6 周后重量损失 10%。此外,三种类型的支架均表现出生物相容性,其中 CTS+nHAP-NH 支架在 WST-1 测定中支持最多的细胞增殖,在乳酸脱氢酶(LDH)试验中对人骨髓间充质干细胞(hBM-MSCs)表现出最低和可接受的细胞毒性水平。最后,在成骨诱导能力评估中,CTS+nHAP-NH 支架使初始碱性磷酸酶(ALP)活性增加近三倍,而 CTS 和 CTS+nHAP 支架仅增加两倍。这些结果表明,所有合成的支架类型都具有一定的潜力用于骨组织工程方法,其中 CTS+nHAP-NH 支架最有前途和适用。在未来,我们计划在详细的分子水平上加强对我们支架上成骨分化的研究,并纳入体内研究以进行临床前目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验