National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu, 610064, China.
Sichuan Testing Center of Medical Devices, Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo Correlation, 8# Xinwen Road, Chengdu, 611731, China.
Adv Sci (Weinh). 2023 May;10(13):e2300038. doi: 10.1002/advs.202300038. Epub 2023 Mar 11.
Nanostructured biomaterials that replicate natural bone architecture are expected to facilitate bone regeneration. Here, nanohydroxyapatite (nHAp) with vinyl surface modification is acquired by silicon-based coupling agent and photointegrated with methacrylic anhydride-modified gelatin to manufacture a chemically integrated 3D-printed hybrid bone scaffold (75.6 wt% solid content). This nanostructured procedure significantly increases its storage modulus by 19.43-fold (79.2 kPa) to construct a more stable mechanical structure. Furthermore, biofunctional hydrogel with biomimetic extracellular matrix is anchored onto the filament of 3D-printed hybrid scaffold (HGel-g-nHAp) by polyphenol-mediated multiple chemical reactions, which contributes to initiate early osteogenesis and angiogenesis by recruiting endogenous stem cells in situ. Significant ectopic mineral deposition is also observed in subcutaneously implanted nude mice with storage modulus enhancement of 25.3-fold after 30 days. Meanwhile, HGel-g-nHAp realizes substantial bone reconstruction in the rabbit cranial defect model, achieving 61.3% breaking load strength and 73.1% bone volume fractions in comparison to natural cranium 15 weeks after implantation. This optical integration strategy of vinyl modified nHAp provides a prospective structural design for regenerative 3D-printed bone scaffold.
具有乙烯基表面修饰的纳米羟基磷灰石(nHAp)通过硅基偶联剂获得,并与甲基丙烯酰化改性明胶光整合,以制造化学整合的 3D 打印混合骨支架(75.6wt%固体含量)。这种纳米结构的方法可将其储能模量显著提高 19.43 倍(79.2kPa),以构建更稳定的机械结构。此外,通过多酚介导的多种化学反应,将具有仿生细胞外基质的生物功能水凝胶锚定在 3D 打印混合支架的细丝上(HGel-g-nHAp),有助于通过原位招募内源性干细胞来启动早期成骨和血管生成。在皮下植入裸鼠 30 天后,观察到明显的异位矿化沉积,储能模量提高了 25.3 倍。同时,HGel-g-nHAp 在兔颅骨缺损模型中实现了实质性的骨重建,与植入后 15 周的天然颅骨相比,断裂载荷强度提高了 61.3%,骨体积分数提高了 73.1%。这种乙烯基改性 nHAp 的光学整合策略为再生 3D 打印骨支架提供了有前景的结构设计。