Suppr超能文献

基于智能手机的地理围栏技术用于确定住院情况。

Smartphone-Based Geofencing to Ascertain Hospitalizations.

作者信息

Nguyen Kaylin T, Olgin Jeffrey E, Pletcher Mark J, Ng Madelena, Kaye Leanne, Moturu Sai, Gladstone Rachel A, Malladi Chaitanya, Fann Amy H, Maguire Carol, Bettencourt Laura, Christensen Matthew A, Marcus Gregory M

机构信息

From the Division of Cardiology (K.T.N., J.E.O., M.N., R.A.G., C.M., A.H.F., C.M., L.B., M.A.C., G.M.M) and Department of Epidemiology and Biostatistics (M.J.P.), University of California, San Francisco; Ginger.io, San Francisco, CA (L.K., S.M.).

出版信息

Circ Cardiovasc Qual Outcomes. 2017 Mar;10(3). doi: 10.1161/CIRCOUTCOMES.116.003326.

Abstract

BACKGROUND

Ascertainment of hospitalizations is critical to assess quality of care and the effectiveness and adverse effects of various therapies. Smartphones, mobile geolocators that are ubiquitous, have not been leveraged to ascertain hospitalizations. Therefore, we evaluated the use of smartphone-based geofencing to track hospitalizations.

METHODS AND RESULTS

Participants aged ≥18 years installed a mobile application programmed to geofence all hospitals using global positioning systems and cell phone tower triangulation and to trigger a smartphone-based questionnaire when located in a hospital for ≥4 hours. An in-person study included consecutive consenting patients scheduled for electrophysiology and cardiac catheterization procedures. A remote arm invited Health eHeart Study participants who consented and engaged with the study via the internet only. The accuracy of application-detected hospitalizations was confirmed by medical record review as the reference standard. Of 22 eligible in-person patients, 17 hospitalizations were detected (sensitivity 77%; 95% confidence interval, 55%-92%). The length of stay according to the application was positively correlated with the length of stay ascertained via the electronic medical record (=0.53; =0.03). In the remote arm, the application was downloaded by 3443 participants residing in all 50 US states; 243 hospital visits at 119 different hospitals were detected through the application. The positive predictive value for an application-reported hospitalization was 65% (95% confidence interval, 57%-72%).

CONCLUSIONS

Mobile application-based ascertainment of hospitalizations can be achieved with modest accuracy. This first proof of concept may ultimately be applicable to geofencing other types of prespecified locations to facilitate healthcare research and patient care.

摘要

背景

确定住院情况对于评估医疗质量以及各种治疗方法的有效性和不良反应至关重要。智能手机作为无处不在的移动地理定位器,尚未被用于确定住院情况。因此,我们评估了使用基于智能手机的地理围栏技术来跟踪住院情况。

方法与结果

年龄≥18岁的参与者安装了一款移动应用程序,该程序通过全球定位系统和手机信号塔三角测量法对所有医院进行地理围栏设置,并在位于医院≥4小时时触发基于智能手机的问卷调查。一项现场研究纳入了连续同意参与的计划接受电生理和心脏导管插入术的患者。一个远程组邀请了仅通过互联网同意并参与健康心脏研究的参与者。以病历审查作为参考标准,确认了应用程序检测到的住院情况的准确性。在22名符合条件的现场患者中,检测到17次住院(敏感性77%;95%置信区间,55%-92%)。根据应用程序得出的住院时间与通过电子病历确定的住院时间呈正相关(=0.53;=0.03)。在远程组中,居住在美国所有50个州的3443名参与者下载了该应用程序;通过该应用程序检测到在119家不同医院的243次就诊。应用程序报告的住院情况的阳性预测值为65%(95%置信区间,57%-72%)。

结论

基于移动应用程序确定住院情况可以达到一定的准确性。这一初步概念验证最终可能适用于对其他类型的预先指定位置进行地理围栏设置,以促进医疗保健研究和患者护理。

相似文献

1
Smartphone-Based Geofencing to Ascertain Hospitalizations.基于智能手机的地理围栏技术用于确定住院情况。
Circ Cardiovasc Qual Outcomes. 2017 Mar;10(3). doi: 10.1161/CIRCOUTCOMES.116.003326.
10
Willingness to use mobile application for smartphone for improving road safety.使用智能手机移动应用程序改善道路安全的意愿。
Int J Inj Contr Saf Promot. 2016;23(2):155-69. doi: 10.1080/17457300.2014.945463. Epub 2014 Aug 8.

引用本文的文献

1
Artificial Intelligence in Cardiovascular Clinical Trials.人工智能在心血管临床试验中的应用。
J Am Coll Cardiol. 2024 Nov 12;84(20):2051-2062. doi: 10.1016/j.jacc.2024.08.069.

本文引用的文献

8
An evaluation of mobile health application tools.移动健康应用工具评估。
JMIR Mhealth Uhealth. 2014 May 1;2(2):e19. doi: 10.2196/mhealth.3088.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验