Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305.
Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):3619-3624. doi: 10.1073/pnas.1618370114. Epub 2017 Mar 21.
RNA-binding proteins (RBPs) control the fate of nearly every transcript in a cell. However, no existing approach for studying these posttranscriptional gene regulators combines transcriptome-wide throughput and biophysical precision. Here, we describe an assay that accomplishes this. Using commonly available hardware, we built a customizable, open-source platform that leverages the inherent throughput of Illumina technology for direct biophysical measurements. We used the platform to quantitatively measure the binding affinity of the prototypical RBP Vts1 for every transcript in the genome. The scale and precision of these measurements revealed many previously unknown features of this well-studied RBP. Our transcribed genome array (TGA) assayed both rare and abundant transcripts with equivalent proficiency, revealing hundreds of low-abundance targets missed by previous approaches. These targets regulated diverse biological processes including nutrient sensing and the DNA damage response, and implicated Vts1 in de novo gene "birth." TGA provided single-nucleotide resolution for each binding site and delineated a highly specific sequence and structure motif for Vts1 binding. Changes in transcript levels in Δ cells established the regulatory function of these binding sites. The impact of Vts1 on transcript abundance was largely independent of where it bound within an mRNA, challenging prevailing assumptions about how this RBP drives RNA degradation. TGA thus enables a quantitative description of the relationship between variant RNA structures, affinity, and in vivo phenotype on a transcriptome-wide scale. We anticipate that TGA will provide similarly comprehensive and quantitative insights into the function of virtually any RBP.
RNA 结合蛋白 (RBPs) 控制着细胞中几乎每一种转录本的命运。然而,目前还没有一种研究这些转录后基因调控因子的方法能够将转录组的高通量与生物物理精度结合起来。在这里,我们描述了一种能够实现这一目标的方法。我们利用常见的硬件构建了一个可定制的、开源的平台,利用 Illumina 技术固有的高通量进行直接的生物物理测量。我们使用该平台定量测量了原型 RBP Vts1 与基因组中每一个转录本的结合亲和力。这些测量的规模和精度揭示了这个研究得很好的 RBP 的许多以前未知的特征。我们的转录基因组阵列 (TGA) 以相同的效率检测稀有和丰富的转录本,揭示了以前的方法错过的数百个低丰度靶标。这些靶标调节了包括营养感应和 DNA 损伤反应在内的多种生物过程,并暗示 Vts1 参与了新基因的“诞生”。TGA 为每个结合位点提供了单核苷酸分辨率,并描绘了 Vts1 结合的高度特异性序列和结构基序。Δ 细胞中转录本水平的变化确立了这些结合位点的调节功能。Vts1 对转录本丰度的影响在很大程度上与其在 mRNA 内的结合位置无关,这对该 RBP 如何驱动 RNA 降解的流行假设提出了挑战。因此,TGA 能够在全转录组范围内定量描述变体 RNA 结构、亲和力和体内表型之间的关系。我们预计 TGA 将为几乎任何 RBP 的功能提供类似的全面和定量的见解。