Institut für Botanik, Leopold-Franzens-Universität-Innsbruck, Innsbruck, Austria.
Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif Sur Yvette, France.
Physiol Plant. 2017 Sep;161(1):75-87. doi: 10.1111/ppl.12567. Epub 2017 May 11.
High light causes photosystem II to generate singlet oxygen ( O ), a reactive oxygen species (ROS) that can react with membrane lipids, releasing reactive electrophile species (RES), such as acrolein. To investigate how RES may contribute to light stress responses, Chlamydomonas reinhardtii was high light-treated in photoautotrophic and mixotrophic conditions and also in an oxygen-enriched atmosphere to elevate ROS production. The responses were compared to exogenous acrolein. Non-photochemical quenching (NPQ) was higher in photoautotrophic cells, as a consequence of a more de-epoxidized state of the xanthophyll cycle pool and more LHCSR3 protein, showing that photosynthesis was under more pressure than in mixotrophic cells. Photoautotrophic cells had lowered α-tocopherol and β-carotene contents and a higher level of protein carbonylation, indicators of elevated O production. Levels of glutathione, glutathione peroxidase (GPX5) and glutathione-S-transferase (GST1), important antioxidants against RES, were also increased in photoautotrophic cells. In parallel to the wild-type, the LHCSR3-deficient npq4 mutant was high light-treated, which in photoautotrophic conditions exhibited particular sensitivity under elevated oxygen, the treatment that induced the highest RES levels, including acrolein. The npq4 mutant had more GPX5 and GST1 alongside higher levels of carbonylated protein and a more oxidized glutathione redox state. In wild-type cells glutathione contents doubled after 4 h treatment, either with high light under elevated oxygen or with a non-critical dose (600 ppm) of acrolein. Exogenous acrolein also increased GST1 levels, but not GPX5. Overall, RES-associated oxidative damage and glutathione metabolism are prominently associated with light stress and potentially in signaling responses of C. reinhardtii.
高光会导致光系统 II 产生单线态氧 (O),一种活性氧 (ROS),可与膜脂质反应,释放活性亲电物质 (RES),如丙烯醛。为了研究 RES 如何有助于光胁迫反应,将莱茵衣藻在光自养和混合营养条件下以及在富氧气氛中进行高光处理,以提高 ROS 产生。将这些反应与外源性丙烯醛进行比较。非光化学猝灭 (NPQ) 在光自养细胞中更高,这是由于叶黄素循环池的去氧化状态和更多的 LHCSR3 蛋白,表明光合作用的压力比混合营养细胞更大。光自养细胞的 α-生育酚和 β-胡萝卜素含量降低,蛋白质羰基化水平升高,这表明 O 产生增加。谷胱甘肽、谷胱甘肽过氧化物酶 (GPX5) 和谷胱甘肽-S-转移酶 (GST1) 的水平也升高,这些都是针对 RES 的重要抗氧化剂。与野生型平行,对 LHCSR3 缺陷 npq4 突变体进行高光处理,在富氧条件下,在光自养条件下表现出特别的敏感性,该处理诱导了包括丙烯醛在内的最高 RES 水平。npq4 突变体具有更高的 GPX5 和 GST1,以及更高水平的羰基化蛋白和更氧化的谷胱甘肽氧化还原状态。在野生型细胞中,无论是在富氧条件下进行高光处理还是在非临界剂量 (600 ppm) 的丙烯醛处理后,谷胱甘肽含量在 4 小时后增加了一倍。外源性丙烯醛也增加了 GST1 水平,但没有增加 GPX5。总之,与 RES 相关的氧化损伤和谷胱甘肽代谢与光胁迫密切相关,并可能与莱茵衣藻的信号转导反应有关。