Suppr超能文献

具有双端读出的飞行时间正电子发射断层扫描的蒙特卡罗模拟:校准、符合分辨时间和统计下限。

Monte Carlo simulations of time-of-flight PET with double-ended readout: calibration, coincidence resolving times and statistical lower bounds.

作者信息

Derenzo Stephen E

机构信息

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America.

出版信息

Phys Med Biol. 2017 May 7;62(9):3828-3858. doi: 10.1088/1361-6560/aa6862. Epub 2017 Mar 22.

Abstract

This paper demonstrates through Monte Carlo simulations that a practical positron emission tomograph with (1) deep scintillators for efficient detection, (2) double-ended readout for depth-of-interaction information, (3) fixed-level analog triggering, and (4) accurate calibration and timing data corrections can achieve a coincidence resolving time (CRT) that is not far above the statistical lower bound. One Monte Carlo algorithm simulates a calibration procedure that uses data from a positron point source. Annihilation events with an interaction near the entrance surface of one scintillator are selected, and data from the two photodetectors on the other scintillator provide depth-dependent timing corrections. Another Monte Carlo algorithm simulates normal operation using these corrections and determines the CRT. A third Monte Carlo algorithm determines the CRT statistical lower bound by generating a series of random interaction depths, and for each interaction a set of random photoelectron times for each of the two photodetectors. The most likely interaction times are determined by shifting the depth-dependent probability density function to maximize the joint likelihood for all the photoelectron times in each set. Example calculations are tabulated for different numbers of photoelectrons and photodetector time jitters for three 3  ×  3  ×  30 mm scintillators: LuSiO:Ce,Ca (LSO), LaBr:Ce, and a hypothetical ultra-fast scintillator. To isolate the factors that depend on the scintillator length and the ability to estimate the DOI, CRT values are tabulated for perfect scintillator-photodetectors. For LSO with 4000 photoelectrons and single photoelectron time jitter of the photodetector J  =  0.2 ns (FWHM), the CRT value using the statistically weighted average of corrected trigger times is 0.098 ns FWHM and the statistical lower bound is 0.091 ns FWHM. For LaBr:Ce with 8000 photoelectrons and J  =  0.2 ns FWHM, the CRT values are 0.070 and 0.063 ns FWHM, respectively. For the ultra-fast scintillator with 1 ns decay time, 4000 photoelectrons, and J  =  0.2 ns FWHM, the CRT values are 0.021 and 0.017 ns FWHM, respectively. The examples also show that calibration and correction for depth-dependent variations in pulse height and in annihilation and optical photon transit times are necessary to achieve these CRT values.

摘要

本文通过蒙特卡罗模拟证明,一台具备以下特性的实用正电子发射断层扫描仪:(1)采用深度闪烁体以实现高效探测;(2)具备双端读出以获取相互作用深度信息;(3)采用固定电平模拟触发;(4)进行精确校准和定时数据校正,能够实现接近统计下限的符合分辨时间(CRT)。一种蒙特卡罗算法模拟了使用来自正电子点源数据的校准程序。选择在一个闪烁体入口表面附近发生相互作用的湮灭事件,另一个闪烁体上两个光电探测器的数据提供与深度相关的定时校正。另一种蒙特卡罗算法使用这些校正来模拟正常运行并确定CRT。第三种蒙特卡罗算法通过生成一系列随机相互作用深度来确定CRT统计下限,对于每次相互作用,为两个光电探测器中的每一个生成一组随机光电子时间。最可能的相互作用时间通过移动与深度相关的概率密度函数来确定,以使每组中所有光电子时间的联合似然性最大化。针对三种3×3×30毫米闪烁体(硅酸镥铈钙(LSO)、溴化镧铈以及一种假设的超快闪烁体),列出了不同光电子数量和光电探测器时间抖动情况下的示例计算结果。为了分离出依赖于闪烁体长度和估计相互作用深度能力的因素,列出了完美闪烁体 - 光电探测器的CRT值。对于具有4000个光电子且光电探测器的单光电子时间抖动J = 0.2纳秒(半高宽)的LSO,使用校正触发时间的统计加权平均值得到的CRT值为0.098纳秒半高宽,统计下限为0.091纳秒半高宽。对于具有8000个光电子且J = 0.2纳秒半高宽的溴化镧铈,CRT值分别为0.070和0.063纳秒半高宽。对于具有1纳秒衰减时间、4000个光电子且J = 0.2纳秒半高宽的超快闪烁体,CRT值分别为0.021和0.017纳秒半高宽。这些示例还表明,为了实现这些CRT值,必须对脉冲高度以及湮灭和光学光子传输时间中与深度相关的变化进行校准和校正。

相似文献

3
Fundamental limits of scintillation detector timing precision.闪烁探测器计时精度的基本限制。
Phys Med Biol. 2014 Jul 7;59(13):3261-86. doi: 10.1088/0031-9155/59/13/3261. Epub 2014 May 29.
5
Analytical model of coincidence resolving time in TOF-PET.TOF-PET中符合分辨时间的分析模型。
Phys Med Biol. 2016 Jun 21;61(12):4699-710. doi: 10.1088/0031-9155/61/12/4699. Epub 2016 Jun 1.

本文引用的文献

1
Bright and ultra-fast scintillation from a semiconductor?来自半导体的明亮且超快速闪烁?
Nucl Instrum Methods Phys Res A. 2016 Jan 1;805:36-40. doi: 10.1016/j.nima.2015.07.033.
7
Fundamental limits of scintillation detector timing precision.闪烁探测器计时精度的基本限制。
Phys Med Biol. 2014 Jul 7;59(13):3261-86. doi: 10.1088/0031-9155/59/13/3261. Epub 2014 May 29.
8
TOF PET offset calibration from clinical data.从临床数据中进行 TOF PET 偏移校准。
Phys Med Biol. 2013 Jun 21;58(12):4031-46. doi: 10.1088/0031-9155/58/12/4031. Epub 2013 May 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验