IEEE Trans Biomed Eng. 2017 Dec;64(12):2890-2900. doi: 10.1109/TBME.2017.2684244. Epub 2017 Mar 17.
state-of-the-art algorithms that quantify nonlinear dynamics in physiologic waveforms are underutilized clinically due to their esoteric nature. We present a generalizable framework for classifying multiscalar waveform features, designed for patient-state tracking directly at the bedside.
an artificial neural network classifier was designed to evaluate multiscale waveform features against a fingerprint database of multifractal synthetic time series. The results are mapped into a physiologic state space for near real-time patient-state tracking.
the framework was validated on cardiac beat-to-beat dynamics processed with the multiscale entropy algorithm, and assessed using PhysioNet databases. We then applied our algorithm to predict 28-day mortality for sepsis patients, and found it had greater prognostic accuracy than standard clinical severity scores.
we developed a novel framework to classify multiscale features of beat-to-beat dynamics, and performed an initial clinical validation to demonstrate that our approach generates a robust quantification of a patient's state, compatible with real-time bedside implementations.
the framework generates meaningful and actionable patient-specific information, and could facilitate the dissemination of a new class of "always-on" diagnostic tools.
由于其深奥的性质,目前用于量化生理波形中非线性动力学的最先进算法在临床上并未得到充分利用。我们提出了一种可推广的多尺度波形特征分类框架,旨在直接在床边进行患者状态跟踪。
设计了一个人工神经网络分类器,用于根据多尺度合成时间序列的多分形指纹数据库对多尺度波形特征进行评估。结果被映射到生理状态空间中,以进行接近实时的患者状态跟踪。
该框架在使用多尺度熵算法处理的心跳间动力学上进行了验证,并使用 PhysioNet 数据库进行了评估。然后,我们将我们的算法应用于预测败血症患者 28 天的死亡率,发现它比标准临床严重程度评分具有更高的预后准确性。
我们开发了一种新的框架来分类心跳间动力学的多尺度特征,并进行了初步的临床验证,以证明我们的方法可以对患者的状态进行稳健的量化,与实时床边实现兼容。
该框架生成有意义且可操作的患者特定信息,并可以促进一类新的“始终在线”诊断工具的传播。