Nguyen Luong, Tosun Akif Burak, Fine Jeffrey L, Lee Adrian V, Taylor D Lansing, Chennubhotla S Chakra
IEEE Trans Med Imaging. 2017 Jul;36(7):1522-1532. doi: 10.1109/TMI.2017.2681519. Epub 2017 Mar 16.
Segmenting a broad class of histological structures in transmitted light and/or fluorescence-based images is a prerequisite for determining the pathological basis of cancer, elucidating spatial interactions between histological structures in tumor microenvironments (e.g., tumor infiltrating lymphocytes), facilitating precision medicine studies with deep molecular profiling, and providing an exploratory tool for pathologists. This paper focuses on segmenting histological structures in hematoxylin- and eosin-stained images of breast tissues, e.g., invasive carcinoma, carcinoma in situ, atypical and normal ducts, adipose tissue, and lymphocytes. We propose two graph-theoretic segmentation methods based on local spatial color and nuclei neighborhood statistics. For benchmarking, we curated a data set of 232 high-power field breast tissue images together with expertly annotated ground truth. To accurately model the preference for histological structures (ducts, vessels, tumor nets, adipose, etc.) over the remaining connective tissue and non-tissue areas in ground truth annotations, we propose a new region-based score for evaluating segmentation algorithms. We demonstrate the improvement of our proposed methods over the state-of-the-art algorithms in both region- and boundary-based performance measures.
在透射光和/或基于荧光的图像中分割广泛的组织学结构类别,是确定癌症病理基础、阐明肿瘤微环境中组织学结构之间的空间相互作用(如肿瘤浸润淋巴细胞)、促进深度分子剖析的精准医学研究以及为病理学家提供探索工具的前提条件。本文重点在于分割乳腺组织苏木精和伊红染色图像中的组织学结构,如浸润性癌、原位癌、非典型和正常导管、脂肪组织以及淋巴细胞。我们基于局部空间颜色和细胞核邻域统计提出了两种基于图论的分割方法。为了进行基准测试,我们精心整理了一个包含232张高倍视野乳腺组织图像以及专家精心标注的真实标注数据集。为了在真实标注中准确模拟对组织学结构(导管、血管、肿瘤网络、脂肪等)相对于其余结缔组织和非组织区域的偏好,我们提出了一种新的基于区域的分数来评估分割算法。我们在基于区域和基于边界的性能指标方面都证明了我们提出的方法相对于现有算法的改进。