Suppr超能文献

非亲属网络的类型及其与晚年生存的关系:潜在类别分析。

Types of Non-kin Networks and Their Association With Survival in Late Adulthood: A Latent Class Approach.

机构信息

Institute of Sociology and Social Psychology, University of Cologne, Germany.

NOVA Norwegian Social Research, Centre for Welfare and Labour Research Oslo, Norway.

出版信息

J Gerontol B Psychol Sci Soc Sci. 2017 Jul 1;72(4):694-705. doi: 10.1093/geronb/gbw142.

Abstract

OBJECTIVES

Integration into social networks is an important determinant of health and survival in late adulthood. We first identify different types of non-kin networks among older adults and second, investigate the association of these types with survival rates.

METHOD

Official register information on mortality is combined with data from the Longitudinal Aging Study Amsterdam (LASA). The sample includes 2,440 Dutch respondents aged 54-85 at baseline in 1992 and six follow-ups covering a time span of 20 years. Using latent class analysis, respondents are classified into distinct types of non-kin networks, based on differences in number and variation of non-kin relations, social support received from non-kin, and contact frequency with non-kin. Next, membership in network types is related to mortality in a Cox proportional hazard regression model.

RESULTS

There are four latent types of non-kin networks that vary in network size and support. These types differ in their associations with mortality, independent of sociodemographic and health confounders. Older adults integrated into networks high in both number and variation of supportive non-kin contacts have higher chances of survival than older adults embedded in networks low in either amount or variation of support or both.

DISCUSSION

A combination of structural and functional network characteristics should be taken into account when developing intervention programs aiming at increasing social integration outside the family network.

摘要

目的

融入社交网络是晚年健康和生存的一个重要决定因素。我们首先确定老年人的不同类型的非亲属网络,其次,研究这些类型与生存率的关系。

方法

将死亡率的官方登记信息与阿姆斯特丹纵向老龄化研究(LASA)的数据相结合。样本包括 1992 年基线时年龄在 54-85 岁的 2440 名荷兰受访者,以及涵盖 20 年时间跨度的六次随访。使用潜在类别分析,根据非亲属关系的数量和变化、非亲属提供的社会支持以及与非亲属的联系频率的差异,将受访者分为不同类型的非亲属网络。接下来,在 Cox 比例风险回归模型中,网络类型的成员身份与死亡率相关。

结果

有四种潜在的非亲属网络类型,其网络规模和支持程度不同。这些类型与死亡率的关联不同,独立于社会人口学和健康混杂因素。与那些网络中支持性非亲属联系数量和变化都较少的老年人相比,那些融入网络中支持性非亲属联系数量和变化都较多的老年人的生存机会更高。

讨论

在制定旨在增加家庭网络以外的社会融合的干预计划时,应考虑网络结构和功能特征的组合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验