Suppr超能文献

使用局域图核学习分子能量。

Learning molecular energies using localized graph kernels.

机构信息

Université Paris-Est, CERMICS (ENPC), F-77455 Marne-la-Vallée, France.

Computational Physics and Methods Group (CCS-2), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

J Chem Phys. 2017 Mar 21;146(11):114107. doi: 10.1063/1.4978623.

Abstract

Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

摘要

最近的机器学习方法使得对原子构型的势能进行化学精度建模(根据从头计算得出)并且速度适合分子动力学模拟成为可能。当已知的物理约束条件被编码到机器学习模型中时,可以实现最佳性能。例如,原子能量在全局平移和旋转下是不变的;它对于同种原子的置换也是不变的。尽管这些对称性很简单,但将它们编码到机器学习算法中却很复杂。在本文中,我们提出了一种基于图论的机器学习方法,该方法自然地包含了平移、旋转和置换对称性。具体来说,我们使用随机游走图核来度量两个邻接矩阵的相似性,每个邻接矩阵代表局部原子环境。这种基于图的近似能量(GRAPE)方法具有灵活性,并允许许多可能的扩展。我们通过在标准有机分子数据集上预测原子化能来对简单版本的 GRAPE 进行基准测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验