Suppr超能文献

迁徙动物所使用的地磁图理论上可能达到的空间精度。

Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals.

作者信息

Komolkin Andrei V, Kupriyanov Pavel, Chudin Andrei, Bojarinova Julia, Kavokin Kirill, Chernetsov Nikita

机构信息

Saint Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia

Saint Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia.

出版信息

J R Soc Interface. 2017 Mar;14(128). doi: 10.1098/rsif.2016.1002.

Abstract

Many migrating animals, belonging to different taxa, annually move across the globe and cover hundreds and thousands of kilometres. Many of them are able to show site fidelity, i.e. to return to relatively small migratory targets, from distant areas located beyond the possible range of direct sensory perception. One widely debated possibility of how they do it is the use of a magnetic map, based on the dependence of parameters of the geomagnetic field (total field intensity and inclination) on geographical coordinates. We analysed temporal fluctuations of the geomagnetic field intensity as recorded by three geomagnetic observatories located in Europe within the route of many avian migrants, to study the highest theoretically possible spatial resolution of the putative map. If migratory birds measure total field intensity perfectly and take the time of day into account, in northern Europe 81% of them may return to a strip of land of 43 km in width along one of coordinates, whereas in more southern areas such a strip may be narrower than 10 km. However, if measurements are performed with an error of 0.1%, the strip width is increased by approximately 40 km, so that in spring migrating birds are able to return to within 90 km of their intended goal. In this case, migrating birds would probably need another navigation system, e.g. an olfactory map, intermediate between the large-scale geomagnetic map and the local landscape cues, to locate their goal to within several kilometres.

摘要

许多属于不同分类群的迁徙动物每年都会在全球范围内迁徙,行程达数百甚至数千公里。它们中的许多能够表现出对地点的忠诚度,即从超出直接感官感知可能范围的遥远地区返回相对较小的迁徙目的地。关于它们如何做到这一点,一个广受争议的可能性是利用磁图,这是基于地磁场参数(总场强和倾角)对地理坐标的依赖性。我们分析了位于欧洲、处于许多鸟类迁徙路线上的三个地磁观测站记录的地磁场强度的时间波动,以研究假定磁图理论上可能的最高空间分辨率。如果候鸟能够完美测量总场强并考虑一天中的时间,在北欧,81%的候鸟可能会回到沿着其中一个坐标宽度为43公里的一条陆地带上,而在更南部的地区,这样一条地带可能会窄于10公里。然而,如果测量误差为0.1%,地带宽度会增加约40公里,这样在春季迁徙时鸟类能够回到距离其预定目标90公里以内的范围。在这种情况下,迁徙的鸟类可能需要另一种导航系统,例如嗅觉地图,介于大规模磁图和局部景观线索之间,以便将其目标定位在几公里范围内。

相似文献

1
Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals.
J R Soc Interface. 2017 Mar;14(128). doi: 10.1098/rsif.2016.1002.
2
Navigation by extrapolation of geomagnetic cues in a migratory songbird.
Curr Biol. 2021 Apr 12;31(7):1563-1569.e4. doi: 10.1016/j.cub.2021.01.051. Epub 2021 Feb 12.
4
Quantum coherence and entanglement in the avian compass.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062704. doi: 10.1103/PhysRevE.87.062704. Epub 2013 Jun 11.
5
The bird GPS - long-range navigation in migrants.
J Exp Biol. 2009 Nov;212(Pt 22):3597-604. doi: 10.1242/jeb.021238.
6
Navigation.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Jul;203(6-7):455-463. doi: 10.1007/s00359-017-1160-1. Epub 2017 Mar 14.
7
How might magnetic secular variation impact avian philopatry?
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):145-154. doi: 10.1007/s00359-021-01533-y. Epub 2022 Feb 12.
8
The magnetic map sense and its use in fine-tuning the migration programme of birds.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017 Jul;203(6-7):491-497. doi: 10.1007/s00359-017-1164-x. Epub 2017 Apr 1.
9
Avian navigation: the geomagnetic field provides compass cues but not a bicoordinate "map" plus a brief discussion of the alternative infrasound direction-finding hypothesis.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Mar;210(2):295-313. doi: 10.1007/s00359-023-01627-9. Epub 2023 Apr 18.
10
Inherited Magnetic Maps in Salmon and the Role of Geomagnetic Change.
Integr Comp Biol. 2015 Sep;55(3):396-405. doi: 10.1093/icb/icv020. Epub 2015 Apr 16.

引用本文的文献

1
Biophysical mechanism of animal magnetoreception, orientation and navigation.
Sci Rep. 2024 Dec 3;14(1):30053. doi: 10.1038/s41598-024-77883-9.
2
Animal magnetic sensitivity and magnetic displacement experiments.
Commun Biol. 2024 May 27;7(1):650. doi: 10.1038/s42003-024-06269-4.
4
A Complement Method for Magnetic Data Based on TCN-SE Model.
Sensors (Basel). 2022 Oct 28;22(21):8277. doi: 10.3390/s22218277.
5
Orientation and navigation in : a quest for repeatability of arena experiments.
Herpetozoa. 2020 Aug 14;33:139-147. doi: 10.3897/herpetozoa.33.e52854.
6
No apparent effect of a magnetic pulse on free-flight behaviour in northern wheatears () at a stopover site.
J R Soc Interface. 2022 Feb;19(187):20210805. doi: 10.1098/rsif.2021.0805. Epub 2022 Feb 16.
7
Magnetic maps in animal navigation.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):41-67. doi: 10.1007/s00359-021-01529-8. Epub 2022 Jan 9.
8
The discovery of the use of magnetic navigational information.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2022 Jan;208(1):9-18. doi: 10.1007/s00359-021-01507-0. Epub 2021 Sep 2.
9
Olfactory-cued navigation in shearwaters: linking movement patterns to mechanisms.
Sci Rep. 2018 Aug 2;8(1):11590. doi: 10.1038/s41598-018-29919-0.

本文引用的文献

1
The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator.
Front Behav Neurosci. 2016 Apr 21;10:77. doi: 10.3389/fnbeh.2016.00077. eCollection 2016.
2
Multi-Modal Homing in Sea Turtles: Modeling Dual Use of Geomagnetic and Chemical Cues in Island-Finding.
Front Behav Neurosci. 2016 Feb 22;10:19. doi: 10.3389/fnbeh.2016.00019. eCollection 2016.
3
Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles.
J Exp Biol. 2015 Apr;218(Pt 7):1044-50. doi: 10.1242/jeb.109975.
4
Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences.
Ecol Lett. 2015 Mar;18(3):287-302. doi: 10.1111/ele.12407. Epub 2015 Jan 22.
5
Conditioned discrimination of magnetic inclination in a spatial-orientation arena task by homing pigeons (Columba livia).
J Exp Biol. 2014 Dec 1;217(Pt 23):4123-31. doi: 10.1242/jeb.101113. Epub 2014 Oct 2.
6
An inherited magnetic map guides ocean navigation in juvenile Pacific salmon.
Curr Biol. 2014 Feb 17;24(4):446-50. doi: 10.1016/j.cub.2014.01.017. Epub 2014 Feb 6.
7
Forty years of olfactory navigation in birds.
J Exp Biol. 2013 Jun 15;216(Pt 12):2165-71. doi: 10.1242/jeb.070250.
8
Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon.
Curr Biol. 2013 Feb 18;23(4):312-6. doi: 10.1016/j.cub.2012.12.041. Epub 2013 Feb 7.
9
The magnetic map of hatchling loggerhead sea turtles.
Curr Opin Neurobiol. 2012 Apr;22(2):336-42. doi: 10.1016/j.conb.2011.11.005. Epub 2011 Nov 30.
10
Longitude perception and bicoordinate magnetic maps in sea turtles.
Curr Biol. 2011 Mar 22;21(6):463-6. doi: 10.1016/j.cub.2011.01.057. Epub 2011 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验